LIGHTNING TRANSIENTS INDUCED IN CONTROL CABLES IN HIGH-VOLTAGE SUBSTATION

Andrzej W. SOWA *, Jarosław WIATER **
*andzewsowa@ochrona.net.pl **jarekw@bialan.pl
Electrical Department, Białystok Technical University

Abstract. This paper presents the numerical simulations of a direct lightning stroke into an open air high-voltage HV substation. Lightning current flowing through the conductive earthed structures over the ground and in earthing grids induced voltage and currents in low-voltage cables. These transients can cause severe problems (damages or misoperation) in control, measurement and secondary circuits. In calculation the different striking points and soil parameters have been taken into account.

1. INTRODUCTION

In HV substation the damages or malfunctions of the electric and electronic equipment were very often caused by:

- switching operations in primary circuits,
- earthing faults,
- lightning strokes.

Some investigations have been made in the area, which concern the interferences caused by high voltage switchyard operations. However, little is known about the nature of lightning transients in control, measurement and secondary low-voltage circuits.

This paper presents a computer analysis of impulse voltages and currents which were induced in low voltage wiring in the case of lightning stroke to the area of substation.

The problem with these lightning transients has been observed in HV substation with the increasing installation of advantage electronic equipment. This concerns specially the digital devices in high voltage measuring and controlling techniques. The older electro-mechanical elements were very well insulated and required sustained signals to operate.

This is the contrast to microprocessors base equipments that are more sensitive to overvoltages and overcurrents which appeared in control cables.

Most dangerous are the surges induced in wires between the electric and electronic equipment located in control building inside the HV substation and other in different points on the substation area.

In investigation the influence of cables routing, parameters of earthing systems and location of striking points were taken into account.

2. HIGH-VOLTAGE SUBSTATIONS

The energetic system being modeled is not located in urban area and consists of the following components:

- substation S1,
- overhead transmission HV lines between substations,
- substations S2 and S3, which were connected with substations S1.

On each station were the same arrangements of HV equipment and control cables. Distances between stations S1 - S2 and S1 – S3 were 3 km (see fig. 1.).

Fig. 1. Typical distribution substations layout

A typical KSU 110/15 kV substation, which was precisely presented in paper [7], will be analyzed. The arrangements of control cables and same part of substation model are presented in Fig. 2.
Mathematical model was employed for the prediction of induced impulses induced in control cables during a direct lightning stroke to the area of substation S1. The induced open circuit voltages and short circuit currents at the ends of cables in control building have been computed.

2.1. Earthing grids

The earthing system is considered to be an arbitrary network of connected buried conductors. The rectangular grid 107m x 62m is made of 6 equal space conductors along the X axis and 10 along the Y axis. Fig. 3. illustrates the earthing system adopted for analysis.

All steel conductors with cross section 80 mm² were buried at 0.8 m depth in homogeneous soil (uniform ground model) with:
- resistivity $\rho = 100 \Omega m$,
- relative permittivity $\varepsilon_r = 1$.

The perimeter of the grid was placed such that the outermost conductors are located exactly 5 m outside the edge of the fence. The fence is regularly connected to the outermost conductors.

2.2. The source of disturbances

A direct lightning stroke is simulated by an ideal current source injected the surge current in different points of station’s area.

In analysis, the lightning current has the following mathematical expression:

$$i(t) = \frac{I}{\eta} (e^{-\alpha t} - e^{-\beta t})$$

where:
- t - time
- α - reciprocal of time constant
- β - reciprocal of time constant
- I - peak current
- η - correcting factor

The parameters of the lightning current, for the first lightning stroke, were taken according to the IEC 61312-1 [8] for the III-IV protection level.

The parameters used in equation for obtaining the lightning current 100 kA, shape 10/350 µs are:

$I=100kA$, $\eta=0.9761$, $\alpha=2049.38 s^{-1}$, $\beta=563768.3 s^{-1}$.

In investigations the impulse currents were injected to the different points of earthed structures in HV substation.

3. NUMERICAL MODELLING

The analyses arrangements (fig.4) have been performed by the MultiFields [9], [10] software package, which is a part of CDEGS package.

The computation methodology assumes the frequency domain analysis, in which each conductor in the network is partitioned in small segments. The segments should be short enough so, that the current is assumed to vary linearly along with the segment for all analysed frequencies, but they should be also large enough to meet the thin wire approximation. Each such segment is represented by an electric dipole located at its centre and the electromagnetic quantities at an observation point are obtained by the sum of the contributions from all of the dipoles.

The field of a single dipole is expressed as the sum of the source term, the image term and the Sommerfeld integral.

The Sommerfeld integrals have been computed by the Double-Integration method i.e. numerically, without any approximation [10].
4. COMPUTATION RESULTS

The impulse voltages and currents at equipment interfaces in control building have been computed for the following shielded cables (fig.5.):
- lengths 62 m,
- distances between cables 10 mm,
- cables run above the ground on height 50 mm.

During the stroke into the substation S1 the lightning current is divided into:
- earthing system of substation S1,
- grounding wires (also named shielded wires) of HV lines,
- the earthing systems in station S2 and S3.

For determining the open circuit voltages and short circuit currents in signal cabling over the ground, two simple circuit configurations have been assumed:
- isolated cables,
- two cables shorted at the ends.

Example of short circuit current in signal cabling in substation S1 is presented in fig. 6.

For all arrangements of cables, which were calculated in station S1, the short currents did not exceed 10 A.

Additionally, fig. 7 shows the short currents in cables which were in substations S2 and S3.

For isolated cables the impulse voltages which appeared in control building between the wires and local (V_C) or true (V_G) earth were calculated.

In analysed arrangements the impulse voltages V_G were much greater than V_C.

Some examples of impulse voltages V_G in substation S1, S2 and S3 are presented in fig. 8 and 9.
In worst cases the voltage V_G reached the values 50-80 kV in substation S1 and 2-2.5 kV in substations S2 and S3.

5. CONCLUSIONS

In paper a method for computer analysis of lightning impulse currents and voltages in control cables is presented. The information about these impulses is very important when electronic devices are used in HV substations.

The advantages of the proposal calculation of the HV substation are:
- all possible configurations of conductive elements on the station and different points of lightning stroke to the station’s area can be represented in theoretical model,
- impulse voltages and currents in conductors over and under the grounds can be analyzed.

The study shown that, the magnitudes of surges can reach the values, which are dangerous for equipments.

REFERENCES

1. Grcv L.: Transient Voltages coupling to shielded cables connected to large substation earthing systems due to lightning. CIGRE 36-201, Session, 1996.
5. Ludwig S.G., Schuetz C.C. Coupling to control Cables in HV Substation.

BIOGRAPHICAL NOTES

Andrzej W. Sowa received M.Sc. and Ph.D. degrees from Warsaw University of Technology in 1974 and 1979 respectively. Since 1978, he has been working in Technical University of Białystok in the field of Electromagnetic Compatibility, particularly in lightning and overvoltages protection.

Jaroslaw Wiater graduated in power system at Electric Power System Faculty of Technical University, Białystok in 2002. Main research area is application of computer technology in damage analysis at electric power substation during direct lightning strokes.

6.7-4