GCC2 versus GCC4 compiling AltiVec code

Grzegorz Kraszewski <krashan@teleinfo.pb.edu.pl>

1. Introduction

An official compiler for MorphOS operating system is still GCC 2.95.3. It is considered outdated by
many people, and lack of newer GCC 3 or GCC 4 compilers is a reason for complaints. As some
unofficial ports of GCC 3 and 4 appeared, there is an opportunity to test them and compare generated
code. My main point of interest is AltiVec, so I've grabbed a port of GCC 4.0.3 done by Marcin
"Morgoth" Kurek, and have given it a try with a Reggae class, fir.filter namely. For those of you not
familiar with digital signal processing, FIR filtering is nothing more than doing a lot of MAC (multiply
and accumulate) operations in a loop, so AltiVec is just what is needed to do it really fast. I've
published a theory behind SIMD-optimized FIRs in [1] and [2]. I've just compiled the class with GCC
4, and ran some tests.

You may imagine how much I've been surprised when it turned out that GCC 4.0.3 generated code is
5 to 15% slower compared to GCC 2.95.3. I've extracted the important code from the class and written
a testcase — still the same result. What is going on? The full source code of my benchmark is available
in [3], the important part of the source is repeated here. I've compiled it as follows:

gccd -02 -noixemul -maltivec -o intfird intfir.c

gcc -02 -noixemul -fvec -c -o intfir2.o intfir.c
gcc -02 -noixemul -fvec -o intfir2 intfir2.o saverest.o

A note for GCC 2 compilation — GCC 2.95.3 does not generate AltiVec non-scratch registers save and
restore in a function prolog and epilog, it only generates calls to external functions. They are provided
in saverest.s PowerPC assembler file, just copied from [4]. It should be noted however, these
operations are done outside loops and have no impact on efficiency (the only difference is GCC 4.0.3
generates them inline automatically). Both versions are compiled from the same source.

Results of 16-bit integer FIR benchmark compiled with GCC 2.95.3 with AltiVec patches.
System:Stryszek/Devel /Work/mbench> intfir2

Table at $21B2CD10
Generated 100%.

Time elapsed: 0.205045 s [43.89 Msamples/s, 2809.14 Mtaps/s], 64 taps

Time elapsed: 0.277914 s [32.38 Msamples/s, 4145.17 Mtaps/s], 128 taps
Time elapsed: 0.448402 s [20.07 Msamples/s, 5138.25 Mtaps/s], 256 taps
Time elapsed: 0.796193 s [11.30 Msamples/s, 5787.54 Mtaps/s], 512 taps
Time elapsed: 1.499267 s [6.00 Msamples/s, 6147.00 Mtaps/s], 1024 taps
Time elapsed: 2.903064 s [3.10 Msamples/s, 6349.15 Mtaps/s], 2048 taps
Time elapsed: 5.674696 s [1.59 Msamples/s, 6496.21 Mtaps/s], 4096 taps
Time elapsed: 11.349737 s [0.79 Msamples/s, 6496.01 Mtaps/s], 8192 taps

Results of 16-bit integer FIR benchmark compiled with GCC 4.0.3. It is now 5 to 15 percent slower (!).
The same code, different results. One may expect GCC 4 at least does not make it worse (if it can't
make it better...), but it is not the case here.

System:Stryszek/Devel/Work/mbench> intfir4
Table at $21B8AF30

Generated 100%.

Time elapsed: 0.215843 s [41.70 Msamples/s, 2668.61 Mtaps/s], 64 taps

Time elapsed: 0.310773 s [28.96 Msamples/s, 3706.89 Mtaps/s], 128 taps
Time elapsed: 0.518138 s [17.37 Msamples/s, 4446.69 Mtaps/s], 256 taps
Time elapsed: 0.941178 s [9.56 Msamples/s, 4895.99 Mtaps/s], 512 taps
Time elapsed: 1.790672 s [5.03 Msamples/s, 5146.67 Mtaps/s], 1024 taps
Time elapsed: 3.471807 s [2.59 Msamples/s, 5309.05 Mtaps/s], 2048 taps
Time elapsed: 6.839173 s [1.32 Msamples/s, 5390.13 Mtaps/s], 4096 taps
Time elapsed: 13.642641 s [0.66 Msamples/s, 5404.23 Mtaps/s], 8192 taps

Something is definitely wrong. I've decided to disassemble the FIR routine and look into details (for the
complete source code see [3]). Let's start with source:

2. The source code

void convolve vector mono_archl 1lépipe intl6(vector short *filter, vector short
*source, vector short *dest, unsigned int frames, unsigned int taps)

{
vector signed short x0, x1, x2, filter block, t0, tl1;
vector signed int u0O, ul, u2, u3, u4, ub5, u6, u7;
vector signed int u8, u9, uA, uB, uC, uD, uE, uF, zero, v0, vl;
vector unsigned char p = (vector unsigned char) VEC VALUE (0x02, 0x03, 0x04,
0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0xOE, 0xQ0F, 0x1C, 0x1D);
unsigned int tapcounter;
vector signed short *sp = NULL;
vector short *fp;

zero = vec_splat s32(0);

while (frames >= 16)

{

u0 = vec splat s32(0); ul = vec splat s32(0);
u2 = vec_splat s32(0); u3 = vec_ splat s32(0);
u4 = vec splat s32(0); ub = vec splat s32(0);
u6 = vec splat s32(0); u7 = vec splat s32(0);
u8 = vec splat s32(0); u9 = vec splat s32(0);
uA = vec splat s32(0); uB = vec splat s32(0);
uC = vec _splat s32(0); uD = vec splat s32(0);
uE = vec splat s32(0); uF = vec splat s32(0);
tapcounter = taps;

sSp = source;

x0 = *sp+t++; x1 = *sp++;

fp = filter;

while (tapcounter > 0)

{
filter block = *fp++;
X2 = *sp++;

u0 = vec msum(x0, filter block, u0);

t0 = vec_sld(x0, x1, 2);
tl = vec_sld(x0, x1, 4);
ul = vec msum(tO, filter block, ul);

u2 = vec msum(tl, filter block, u2);
t0 vec sld(x0, x1, 6);
tl vec sld(x0, x1, 8);
u3 = vec msum(tO, filter block, u3);
u4 = vec msum(tl, filter block, ud);

x0

v0
x0
x0

v0
x0
x0

v0
x0
x0

v0
x0
x0

v0
x1
x1

v0
x1
x1

v0
x1
x1

v0
x1
x1

t0 = vec sld(x0, x1, 10);
tl = vec sld(x0, x1, 12);
ub = vec msum(t0, filter block, ub);
u6 = vec msum(tl, filter block, u6);
t0 = vec _sld(x0, x1, 14);
u7 = vec msum(tO, filter block, u7);
u8 = vec msum(xl, filter block, u8);
t0 = vec_sld(xl, x2, 2);
tl = vec_sld(xl, x2, 4);
u9 = vec msum(tO, filter block, u9);
uA = vec msum(tl, filter block, uA);
t0 = vec sld(xl, x2, 6);
tl = vec sld(xl, x2, 8);
uB = vec msum(t0, filter block, uB);
uC = vec msum(tl, filter block, uC);
t0 = vec_sld(xl, x2, 10);
tl = vec_sld(xl, x2, 12);
uD = vec msum(tO, filter block, uD);
uE = vec msum(tl, filter block, uE);
t0 = vec_sld(xl, x2, 14);
uF = vec msum(tO, filter block, uF);
x0 = x1;
x1l = x2;
tapcounter -= 8;
= vec_splat s16(0); x1 = vec splat sl1l6(0);
= vec_sums (u0, zero); vl = vec sums (ul, zero);
= vec_perm(x0, (vector signed short)v0, p);
= vec_perm(x0, (vector signed short)vl, p);
= vec_sums (u2, zero); vl = vec sums (u3, zero);
= vec_perm(x0, (vector signed short)v0, p);
= vec_perm(x0, (vector signed short)vl, p);
= vec_sums (u4, zero); vl = vec_ sums (ub, zero);
= vec perm(x0, (vector signed short)v0, p);
= vec perm(x0, (vector signed short)vl, p);
= vec_sums (u6, zero); vl = vec sums(u’7, zero);
= vec_perm(x0, (vector signed short)v0, p);
= vec_perm(x0, (vector signed short)vl, p);
= vec_sums (u8, =zero); vl = vec sums(u9, zero);
= vec_perm(xl, (vector signed short)v0, p);
= vec_perm(xl, (vector signed short)vl, p);
= vec_sums (uA, zero); vl = vec_ sums (uB, zero);
= vec perm(xl, (vector signed short)v0, p);
= vec perm(xl, (vector signed short)vl, p);
= vec_sums (uC, zero); vl = vec sums (uD, zero);
= vec_perm(xl, (vector signed short)v0, p);
= vec_perm(xl, (vector signed short)vl, p);
= vec_sums (ukE, zero); vl = vec_ sums (uF, zero);
= vec_perm(xl, (vector signed short)v0, p);
= vec_perm(xl, (vector signed short)vl, p);

frames -= 16;
*dest++ = x0;
*dest++ = x1;
source += 2

The most important block consists of vec msum() and vec sld() instructions, as it is inside two nested
loops.

3. GCC 2.95.3 executable

Here is a dissasembled integer FIR routine compiled with GCC2:

00001258 <convolve vector mono archl lépipe intl6>:

1258: stwu rl,-112(rl)
125c: mflr r0

1260: stw rO,116(rl)
1264: addi rO0,rl, 96

1268: bl 3068 < _savev27>
126c: stw rll,108(rl)
1270: oris rll,rll,65535
1274: ori rll,rll,61471

1278: mtspr 256,rl1l

This is a typical function prolog. Note that saving non-scratch AltiVec registers is not inlined, GCC 2
needs savevXX() functions to be linked from separate object (compiled from assembler source taken
from AltiVec PIM document). Looking at what is written in VRSAVE, we see, there are 25 AltiVec
registers used.

127c: lis r9,0

1280: vspltisw v9,0

1284: cmplwi r6,15

1288: addi r9,r9,0
128c: vsldoi v27,v9,v9,0
1290: 1lvx v8,r0,r9
1294: ble 1434 <convolve vector mono archl lépipe intlé+0xldc>
1298: vsldoi v5,v27,v27,0
129c: addi r9,r4,16
12a0: mr. r0, r7

12a4: lvx v10,r0,r4
12a8: 1lvx v1ll,r0,r9
l2ac: addi ro,ro6,-16
12b0: addi r4d,rd,32
12b4: vsldoi v6,v5,v5,0
12b8: addi r9,r9,16
12bc: mr rll,r3
12c0: vsldoi v18,v5,v5,0
12c4: addi rl0,r5,16
12c8: vsldoi v7,v6,v6,0
12cc: vor v1l7,v6,v6
12d0: vsldoi v4,v7,v7,0
12d4: vor v1le,v7,v7
12d8: vsldoi v3,v4,v4,0
12dc: vor v15,v4,v4

12e0: vsldoi v2,v3,v3,0

12e4:
12e8:
1l2ec:
12f0:
12f4:
12£8:

vor
vsldoi
vor
vsldoi
vor
vsldoi

v1ld,v3,v3
v19,v2,v2,0
v30,v2,v2
v31l,v19,v19,0
v29,v19,v19
v28,v31,v31,0

The main thing here is (except loop organization) zeroing 16 AltiVec registers used as accumulators.
The source have just vec_splat s32() repeated 16 times, but GCC 2 cleverly does just one vspltisw at
$1280 and then copies v9 to other 15 registers using vor and vsidoi alternately to balance load between
VPU (permutation unit), executing vs/doi and VIU1 (simple integer arithmetic unit), executing vor-.

12fc:
1300:
1304:
1308:
130c:
1310:
1314:
1318:
131c:
1320:
1324:
1328:
132c:
1330:
1334:
1338:
133c:
1340:
1344:
1348:
134c:
1350:
1354:
1358:
135c:
1360:
1364:
1368:
136c:
1370:
1374:
1378:
137c:
1380:
1384:
1388:
138c:
1390:
1394:

beq

1lvx
vsldoi
addic.
vsldoi
1lvx

addi
addi
vmsumshm
vsldoi
vmsumshm
vsldoi
vmsumshm
vmsumshm
vsldoi
vmsumshm
vsldoi
vmsumshm
vmsumshm
vsldoi
vmsumshm
vsldoi
vor
vmsumshm
vsldoi
vmsumshm
vsldoi
vmsumshm
vsldoi
vmsumshm
vsldoi
vmsumshm
vsldoi
vmsumshm
vmsumshm
vsldoi
vor
vmsumshm
bne

1398 <convolve vector mono archl l6pipe intl6+0x140>
v0,r0,rll
v13,v10,v1ll,2
r0,r0, -8
v1lz2,v10,v11,4
v1l,r0,r9
rll,r1l1,16
r9,r9,16
v5,v13,v0,v5
v13,v10,v11l,6
v1l7,v12,v0,v1l7
v1lz2,v10,v11,8
v18,v10,v0,v1l8
v6,v13,v0,vo
v13,v10,v11,10
v1lie,v1l2,v0,v16
v1l2,v10,v11,12
v1l4,v11l,v0,v14
v7,v13,v0,v7
v13,v10,v11l, 14
v1l5,v12,v0,v1l5
v1lz,v1ll,vl,4
v10,v1ll,vll
vd,v1l3,v0,v4
v1l3,v1ll,vl,2
v30,v12,v0,v30
v1l2,v1ll,vl,8
v3,v13,v0,v3
v1l3,v1ll,vl, 6
v29,v12,v0,v29
v1iz,v1ll,vl1l,12
v2,v13,v0,v2
v13,v1l1l,v1l,10
v28,v12,v0,v28
v19,v13,v0,v19
v13,vll,vl,14
vlil,vl,vl
v31l,v13,v0,v31l
1300 <convolve vector mono archl lé6pipe intl6+0xa8>

The sequence above is the critical part of code, as it is inside both the internal and external loop. From
results of tests it is clear, that GCC 2 compiled code is significantly faster than GCC 4 one. Why? I'll
show it later, when analysing temporary variables 70 and ¢/ usage pattern (v/2 and v/3 here).

1398:
139c:

vsumsws
cmplwi

vl,v18,v9
ro,15

13a0: VSUmsws vQ0,v5,v9

13a4: vsldoi v1ll,v27,v27,0
13a8: vperm v10,v1ll,vl,v8
13ac: VSumsws vl,v1l7,v9
13b0: vperm v10,v10,v0,v8
13b4: VSumsws v0,v6,v9
13b8: vperm v10,v10,vl,v8
13bc: VSUMSWS vl,vle,v9
13c0: vperm v10,v10,v0,v8
13c4: VSumsws v0,v7,v9
13c8: vperm v10,v10,vl,v8
13cc: VSUmMsSws vl,vl5,v9
13d0: vperm v10,v10,v0,v8
13d4: VSUumsws v0,v4,v9
13d8: vperm v10,v10,v1l,v8
13dc: VsSumsws vl,v14,v9
13e0: vperm v10,v10,v0,v8
13e4: VSumsws v0,v3,v9
13e8: stvx v10,r0,r5
13ec: mr r5,r10

13f0: vperm v1ll,v1ll,vl,v8
13f4: VSumsws v1l,v30,v9
13£8: vperm v1ll,v1ll,v0,v8
13fc: VSUmMsSws v0,v2,v9
1400: vperm v1ll,vll,vl,v8
1404: VSUmMsSws vl,v29,v9
1408: vperm v1ll,v1ll,vO0,v8
140c: VSumsws v0,v19,v9
1410: vperm v1ll,vll,vl,vS8
1414: VSUmsSws vl,v28,v9
1418: vperm v1ll,v1ll,v0,v8
141c: VSumsws v0,v31l,v9
1420: vperm v1ll,v1ll,vl,v8
1424: vperm v1ll,v1ll,vO0,v8
1428: stvx v1ll,r0,r5
142c: addi r5,r5,16
1430: bgt 1298 <convolve vector mono archl l6pipe intl6+0x40>

This part is responsible for summing partial results across accumulators (vsumsws, 16 times), extracting
most significant 16 bits from accumulators, and then interleaving data before storing (vperm). As this
code is outside the inner loop its performance is less critical.

1434: lwz rl0,108(rl)
1438: addi r0,rl, 96

143c: bl 30cc < _restv27>
1440: lwz r0,116(rl)
1444: mtlr r0

1448: addi rl,rl,112

1l44c: blr

The function epilog. Restore registers, VRSAVE and stack, then b/r to the caller.

4. GCC 4.0.3 executable

Ok, now let's look at the same code compiled with GCC 4.0.3:

00001320 <convolve vector mono archl lépipe intl6>:

1320:
1324:
1328:
132c:
1330:
1334:
1338:
133c:
1340:
1344:
1348:
134c:
1350:
1354:
1358:
135c:

stwu
1i
stvx
1i
stvx
1i
stvx
1i
stvx
1i
stvx
mfspr
stw
oris
ori
mtspr

rl,-112(rl)
r0,16
v27,rl,r0
r0,32
v28,rl, r0
r0,48
v29,rl,r0
r0, 64
v30,rl, r0
r0, 80
v3l,rl,r0
r0, 256
r0,108(rl)
r0,r0, 65535
r0,r0,61471
256,10

This is again the function prolog. Nothing special, but saving non-scratch AltiVec registers is now
inlined, as automatically generated by the compiler. Number of AltiVec registers used is exactly the
same (25) as in GCC 2 version, we can also notice, that there are the same registers used.

1360:
1364:
1368:
136c:
1370:

vspltisw
cmplwi
mflr

stw

bgt

v18,0

cr7,r6,15

r0

r0,116(rl)

cr7,13b4 <convolve vector mono archl l6pipe intl6+0x94>

The first significant difference in the loop organization. GCC 2 generates jump at loop exit (just like in
the source), GCC 4 prefers to jump at every loop turn, so then we should jump as well to the offset
$13B4. The external loop is controlled by sample counter located at r6. The vI8 register is zeroed, it
will be used later for clearing other 15 registers used as accumulators.

1374:
1378:
137c:
1380:
1384:
1388:
138c:
1390:
1394:
1398:
139c:
13a0:
13a4:
13a8:
13ac:
13b0:

1i
lwz
1lvx
1i
1lvx
1i
1lvx
1i
1lvx
1i
1lvx
mtspr
lwz
addi
mtlr
blr

r0,16
rl2,108 (rl)
v27,rl,r0
r0,32
v28,rl,r0
r0,48
v29,rl,r0
r0, 64
v30,rl, r0
r0, 80
v3l,rl,r0
256,rl2
r0,116(rl)
rl,rl,112
r0

The code fragment above is the function eplilog, non-scratch AltiVec registers are restored, as well as
VRSAVE register and the stack. Final blr returns to the caller.

13b4: lis r9,0

13b8: cmpwi cr6,r7,0

13bc: addi r9,r9,0

13c0: 1i r8,16

13c4: lvx v17,r0,r9

13c8: vspltish v27,0

13cc: b 146¢c <convolve vector mono_archl lépipe intl6+0xl4c>

GCC 4 liked to insert an unconditional branch here (note that GCC 2 does not need it). Then we should
jump in our code analyse to the offset $146C. A lvx at $13C4 loads permutation control vector for
vec_perm() used later. An internal loop, controlled by filter tap counter (located at »7) is organized here.

13d0: addi r6,r6,-16
13d4: VSumsws v0,v4,v18
13d8: cmplwi cr7,r6,15
13dc: VSUMSWS v13,v28,v18
13e0: vperm v0,v27,v0,v17
13e4: VSumsws v12,v7,v18
13e8: vperm v0,v0,v13,v1l7
13ec: VSUmMsSws v1ll,v30,v18
13f0: vperm v0,v0,v12,v1l7
13f4: VSUmsSws v10,v9,v18
13£8: vperm v0,v0,v11l,v1l7
13fc: VSumsws v9,v3l,vl18
1400: vperm v0,v0,v10,v17
1404: VSUmsSws v8,v8,v18
1408: vperm v0,v0,v9,v1l7
140c: VSUMSWS v7,v14,v18
1410: vperm v0,v0,v8,v1l7
1414: VSumsws vl,v6,v1s8
1418: vperm v0,v0,v7,v1l7
1l41c: VSUmMsSws v6,v15,v18
1420: stvx v0,r0,r5
1424: VSUmsws v5,v5,v18
1428: vperm vl,v27,v1l,v17
142c: VSUmsSws v4d,vle,v18
1430: vperm vl,vl,vé6,v1l7
1434: VSUmsws v3,v3,v18
1438: vperm vl,vl,v5,v1l7
143c: vsumsws v2,v2,v18
1440: vperm vl,vl,v4,v1l7
1444: VSumsws v19,v19,v1l8
1448: vperm vl,vl,v3,v1l7
144c: VSUmsws v0,v29,v18
1450: vperm vl,vl,v2,v1l7
1454: mr rd,r10

1458: vperm vl,vl,v19,v1l7
145c: vperm vl,vl,v0,v1l7
1460: stvx vl,r5,r8

Across-register accumulator summing, truncating 16 least significant bits, merging.

1464: addi r5,r5,32
1468: ble- cr7,1374 <convolve vector mono archl 16pipe intl6+0x54>

External (controlled by output sample counter) loop end.

1l46c¢c: addi rl0,r4, 32

1470: vor 28,v18,v18
1474: vor v4,v18,v18
1478: vor v30,v18,v18
147c: vor v7,v18,v18
1480: vor v31l,v18,v18
1484: vor v9,v18,v18
1488: vor v14,v18,v18
148c: vor v8,v18,v18
1490: vor v15,v18,v1l8
1494: vor v6,v18,v18
1498: vor v1le,v18,v18
149c: vor v5,v18,v18
14a0: vor v2,v18,v18
14a4: vor v3,v18,v18
14a8: vor v29,v18,v18
l4ac: vor v19,v18,v18

Well, we are at the first GCC 4 problem. Although it was smart enough to replace a series of 15
vec_splat() with register copying, it does the copy only with one kind of instruction, possibly saturating
VIU1 pipeline. This is not critical however, instructions do not depend on each other (so no pipeline
stalls) and this sequence is done only once per external loop turn.

14b0: 1lvx v10,r0,r4
14b4: 1lvx v1ll, r4,r8

Loading the first 16 samples of input vector.
14b8: beg cr6,13d0<convolve vector mono archl lépipe intl6+0xb0>

This time GCC 4 did not reorganized the loop. The above conditional branch is a part of internal loop,
controlled by filter counter in 7 (look at cmpwi at $13B8). What is funny, the jump is taken back,
while in the source it is forward, as usual with loops.

l4bc: mr rll,rl0
14cO0: mr r0,r7
14c4: mr r9,r3
14c8: addic. r0,r0,-8
l4cc: 1lvx v13,r0,r9
14d0: 1lvx v12,r0,rll

The first fragment of the internal loop, two /vx load filter coefficents. Note that they are not interleaved
with some other instructions as one may expect.

14d4: vsldoi v0,v10,v11l,14
14d8: vsldoi vl,v1l0,v1ll,4
l4dc: vmsumshm v1l4,v0,v13,v14
14e0: vmsumshm v4d,v10,v13,v4
14e4: vsldoi v0,v10,v1ll,2
14e8: vmsumshm vo,vl1l,v13,v6
l4dec: vmsumshm v28,v0,v13,v28
14£0: vmsumshm v7,v1l,v13,v7
14f4: vsldoi v0,v10,v1l, 6
14£8: vsldoi vl,v1l0,v1l, 8
l4fc: vmsumshm v30,v0,v13,v30
1500: vmsumshm v9,vl,v13,v9

1504: vsldoi v0,v10,v11,10

1508: vsldoi vl,v1l0,v11l,12

150c: vmsumshm v31l,v0,v13,v31l
1510: vmsumshm v8,vl,v1l3,v8
1514: vsldoi v0,v1ll,v12,2
1518: vsldoi vl,vll,vl2,4
151c: vor v10,v1ll,vll
1520: vmsumshm v1l5,v0,v13,v1l5
1524: vmsumshm v5,vl,v13,v5
1528: vsldoi v0,v1ll,v1l2,06
152c: vsldoi vl,vl1ll,v1l2,8
1530: vmsumshm v1le,v0,v13,v1l6
1534: vmsumshm v3,vl,v13,v3
1538: vsldoi v0,v11l,v12,10
153c: vsldoi vl,vll,v1l2,12
1540: vmsumshm v2,v0,v13,v2
1544: addi r9,r9,16

1548: vsldoi v0,v1ll,v12,14
154c: addi rll,rll,16
1550: vmsumshm v19,vl,v1l3,v19
1554: vor vll,vl2,v12
1558: vmsumshm v29,v0,v13,v29
155c: bne 14c8 <convolve vector mono archl l6pipe intl6+0x1a8>
1560: b 13d0 <convolve vector mono_archl lépipe intl6+0xb0>

5. Where is the problem?

The problem is caused by rescheduling of AltiVec instructions by GCC 4. Version 2 of the compiler
puts AltiVec instructions just in the same order as they stand in the source. While it may be considered
a disadvantage for unexperienced programmer writing expressions in random order, any hand-made
odrering is ruined. The order of instructions, I've used in the code is not a rocket science, it is based just
on a basic knowledge of how modern microprocessors work, what is pipeline, how instructions are
distributed between execution units, etc. GCC 4 preferred to "know better", but the final result is
wrong. Let's look at usage of temporary variables ¢0 and ¢/. GCC 2 placed these variables in v/3 and
vi2, GCC 4 preferred v0 and v/.

O —register used as source
@ — register used as destination

GCC 2.95.3 GCC4.0.3

Offset v12 v13 VIU2 VPU Offset v0 vl VIU2 VPU
$1300 $14D4 o
$1304 o ([$14D8 ; o
$1308 $14DC g o
$130C @ [J $S14E0 o

$1310 S14E4 o
$1314 S14E8 g []

$1318 $14EC [
$131C 5 o $14F0 @) o
$1320 o o $14F4 o
$1324 8 ([] S14F8 g o
$1328 @ [J S14FC g o
$132C o $1500 [

$1330 & o $1504 o
$1334 ([$1508 ; o
$1338 ¥ T o $150C T o

GCC2.95.3 GCC4.0.3
Offset v12 v13 | VIU2 VPU Offset v0 vl VIU2 VPU
$133C @ o $1510 @) o
$1340 o $1514 ®
$1344 5 o $1518)
$1348 o] $151C T
$134C 5) $1520 x e
$1350 @ [] $1524)
$1354 $1528 @ ®
$1358 5) $152C x o
$135C o (] $1530 g L]
$1360 5) $1534)
$1364 @ ° $1538 o
$1368 5) $153C i o
$136C o ° $1540)
$1370 8 o $1544
$1374 @ ° $1548)
$1378 & o $154C T
$137¢C] $1550 o
$1380 5 g) $1554
$1384 o $1558 o
$1388 [] $155C
$138C i
$1390)

My hand-made scheduling was done with one thing in mind — AltiVec has pipelined execution units,
both vsldoi and vmsumshm have 2 and 4 cycles latency respectively and 1 cycle throughput. It means
instruction which produces a result, and the one using it should be separated to avoid pipeline stalls. In
most cases there is at least one additional VIU2 instruction between vs/doi generating a result (which is
executed by VPU) and vmsumshm using it (which is executed by VIU2). What is easily visible, a third
temporary variable should improve the performance a bit, I will for sure test it in the future. GCC 4
managed to get the code a bit shorter (by moving some auxiliary instructions out of the critical block),
but destination-source separation is definitely worse (red arrows in the table). GCC 4 seems to try to
generate an uniform pattern here, but it hits performance at the end. I don't know why it uses such a
strange scheduling, what I can say, it simply does not work. Maybe there are some compiler options
able to improve the code quality, but generally I'm disappointed with GCC 4. One may say I can
improve GCC4 code by tweaking the source code, or messing with compiler options. Well, possible,
but this is not a point. When I migrate from an older version of a tool to a newer one, I expect this new
wersion will give me at least as good results as the old one (possibly even better). GCC 4 breaks this
rule, working worse.

6. References

[11] KRASZEWSKI G., Performance Analysis of Alternative Structures for 16-bit Integer FIR Filter
Implemented on AltiVec SIMD Processing Unit, Proceedings of IEEE Workshop on Signal
Processing, Poznan, 2006, 83-87.

[2] KRASZEWSKI G., Fast FIR Filters for SIMD Processors With Limited Memory Bandwidth,
Proceedings of XI Symposium AES ,New Trends in Audio and Video”, Biatystok, 2006, 467—
472.

[3] KRASZEWSKI G., Testcase for GCC 2.95.3 and GCC 4.0.3 Compilers Compiling AltiVec Code,
http://teleinfo.pb.edu.pl/~krashan/altivec/gccbenchmark/.

[4] [—], AltiVec Technology Programming Interface Manual, Motorola 1999.

