
NON-UNIFORM KERNEL SAMPLING
 IN AUDIO SIGNAL RESAMPLER

Grzegorz Kraszewski

Białystok Technical University, Electrical Engineering Faculty,
ul. Wiejska 45D, 15-351 Białystok, Poland, e-mail: krashan@teleinfo.pb.bialystok.pl

Abstract: Classic interpolators (resamplers) of band-

limited signals are based on windowed sinc() function
kernels. To speed computations up, kernel is not calculated
in realtime, but sampled and stored in a table. Linear
interpolation between kernel samples is used to lower
noise caused by discretization of the continuous kernel
function. In spite of this, the table is lenghty for high
quality interpolators. This paper describes how the table
size can be significantly lowered at a cost of slightly
increased computation complexity and without quality loss.
The algorithm described is specifically designed for SIMD
processors, which high computational power is limited by
memory bandwidth.

1 Introduction

Resampling of a bandlimited signal is a common task
in signal processing, especially in audio signals processing.
The general discussion of resampling systems is given in
[1] and [2]. The input to a resampler is a discrete signal
x[n], obtained by sampling original continuous x(t) with
period Tin. The first step of resampling is reconstruction of
original x(t). Then, if sampling rate is to be decreased, an
antialiasing lowpass filter must be applied, so recon-
structed signal bandwidth is limited to fout/2, where fout is
the output sampling frequency. The last stage of
resampling is to sample reconstructed and if neccesary
filtered x(t) at the new sampling rate. There are different
approaches to x(t) reconstruction problem. The most
straighforward approach is given in [3], where input signal
is convolved with continuous sinc() kernel. While
theoretically ideal, it is impossible to implement, because
of infinite sinc() function support and computation cost of
sinc(). The first problem may be solved by windowing the
kernel, usually with Kaiser [3], or Chebyshev-Dolph [4],
[5] window. The second is solved by sampling windowed
kernel and store it in a look-up table. In fact this solution is
a particular case of GASRC [2], where upsampling rate is
equal to kernel oversampling (usually power of two [3],
[4]), digital interpolator filter is approximated brickwall
one (hence windowed sinc() impulse response), analog
interpolator is sample and hold or linear one.

It has been shown in [6], that windowed sinc()

interpolator cannot be considered optimal for every
application, as it can't for example resample constant
signal precisely (which may be critical in image
processing). It is not a problem in audio processing

however as passband starts from 20 Hz here. Windowed
sinc() interpolator has also an advantage of easy control of
distortions in the frequency domain, as three sources of
distortions: kernel windowing, kernel interpolation and
aliasing may be controlled independently [4]. Another
advantage of the solution is the possibility to change
resampling ratio in real time and wide range (for example
multioctave pitch sliding effects), which is not possible in
the algorithm proposed in [1]. Windowed sinc()
resampling is also easy to paralellize for execution on
SIMD processors. It has a drawback however, which is
usage of large lookup table containing oversampled kernel.
A computing power of current SIMD processors can be
limited by memory bandwidth, so large lookup tables
should be avoided. For example PowerPC G4 AltiVec unit
clocked at 1.0 GHz, is able to perform up to 109 MAC
(multiply and accumulate) instructions per second taking 8
floating point arguments each [7]. It gives an 32 GB/s
stream of data, which is beyond capabilities of memory
systems in consumer electronics/PC-s. Lowering the size
of lookup tables even at a cost of increased number of
calculations, yields increased performance of an algorithm
executed by SIMD processor [9].

2 Kernel sampling

The most precise way to obtain a value of a continuous
reconstruction kernel at any point x is to calculate it in-
place. It involves one division and calculation of sin(x)
function, which is usually based on Taylor series.
Distortions caused by kernel sampling are eliminated this
way, but calculations take time. Things get worse if the
sinc() function is windowed. The Kaiser window requires
calculation of the modified Bessel function, which is again
developed in power series. The Chebyshev-Dolph window
is given in the frequency domain and usually transformed
with DFT, so no continuous time domain representation
exists even.

The first approach to kernel interpolation was nearest-

neighbour interpolation between the look-up table entries.
Some results are cited in [1] and given in [4]. To suppress
sidelobes level below -80 dB, the kernel must be
oversampled 4096 times, so depending on requirements on
filter transition band it may result in 32 768 [4] – 140 000
[1] samples. Linear interpolation between samples is an
obvious step forward, it improves distortions level by
factor of 2 (in dB scale) [4], so oversampling by 128 is

enough to achieve -100 dB attenuation of distortions.
Higher level interpolation is investigated in [8] with the
difference that not filter kernel is interpolated, but
oversampled input sequence. The goal of presented
algorithm is to increase interpolation precision while
staying on linear (1-st order) interpolation level. It can be
done with non-uniform kernel sampling. Looking at
sampled windowed sinc() (abbreviated later in this paper
as wsinc()) kernel it is intuitive that sample points should
be placed more dense in some areas, while in other places
the kernel may be approximated by linear function in wider
range. Let's constrain samples x position to be aligned to
π/2N grid, N = 10 on the following diagrams. Sample
positioning starts from 0, of course wsinc(0) = 1.0. Then x
is increased in π/2N steps while following inequality is
true:

1

0
1

(, ,)
2

n

N
i k

iwsinc g i k nπε ε
−

= +

 = − <

∑ (1.1)

where g(i,k,n) is a linear interpolator between grid point of
index k (the last placed point) and current grid point of
index n, given by a formula:

 ()
()

(, ,)
2

2 2

N

N N

kg i k n wsinc

i k n kwsinc wsinc
n k

π

π π

 = +

− + − −

 (1.2)

The interpolation and formulas (1.1) and (1.2) are

illustrated graphically on fig. 1.

Fig. 1. Interpolation and interpolation error of the kernel.

The formula (1.1) is just the sum of lengths of dotted

vertical lines on the figure 1, representing errors of linear
interpolation of wsinc() kernel at grid points. It can be
interpreted as a rough approximation of interpolation error
integral:

2

2

() (, ,)
N

N

n

k

wsinc x g x k n dx

π

π

−∫ (1.3)

where g(x,k,n) is a continuous version of linear

interpolator between two kernel samples.

The end point of current interpolation interval is moved

right (n is increased by one) until ε exceeds ε0. This way
the sum of interpolation errors made between two
consecutive kernel samples is limited to ε0. Two diagrams
below (fig. 2 and 3) shows the same windowed sinc()
kernel of <0, 16π> range windowed by the Kaiser window
(β = 11.0, which gives windowing sidelobes at -112 dB
level). Threshold ε0 value has been choosen as 0.0159, to
get exactly 128 samples, the same number as in regulary, 8
times oversampled kernel.

-0,4

-0,2

0

0,2

0,4

0,6

0,8

1

0 2 4 6 8 10 12 14 16

w
si

nc
[n

]

Fig.2. The kernel sampled regularly with oversampling

rate of 8 (128 samples).

-0,4

-0,2

0,0

0,2

0,4

0,6

0,8

1,0

0 2 4 6 8 10 12 14 16

w
si

nc
[n

]

Fig. 3 The kernel sampled irregularly on π/1024 grid, (128
samples).

The figure 4 compares interpolation errors of both

interpolators. The interpolation error of the regularly
sampled kernel is shown in gray, its maximum value is
6.4156·10-3. The interpolation error of the irregularly
sampled kernel is shown in black, its maximum value is
6.3445·10-4, so it is about 10 times lower. The most
important thing for audio processing however, is how it
influences the kernel frequency response.

wsinc(x)

g(i,k,n)

k n

kπ/2N nπ/2N

nπ/8

nπ/8

0

0,001

0,002

0,003

0,004

0,005

0,006

0,007

0 2 4 6 8 10 12 14

er
ro

r

16

Fig.4. Comparision of interpolation errors of uniformly

and non-uniformly sampled kernel (128 samples).

4 Frequency properties

Interpolation of regularly sampled kernel produces a
pair of sidelobes located around the doubled oversampling
frequency [4] (16 fs in the example case), see the figure 5.
These sidelobes are mirrored and repeated in both
directions around every multiply of the oversampling
freqency, so one of them is always reproduced in the
baseband, creating aliasing distortions. The level of
sidelobes expressed in the logarithmic scale depends
linearly on the exponent N defining oversampling rate.

-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

0 64 128 192 256 320 384 448

A
[d

B]

Fig. 5. Frequency response of uniformly sampled

windowed sinc() kernel (128 samples).

If the kernel is sampled non-uniformly with the
proposed algorithm, energy of sidelobes is spreaded on the
whole frequency range between 0 and 2N-1 fs. Of course
part of it still creates aliasing distortions in the passband,
but most of the energy will be filtered out. In the presented
example aliasing distortions caused by reconstruction
kernel sampling are reduced by 18 dB (figure 6).

The more general comparision between uniform

sampling and the proposed algorithm is shown on the
figure 7. Four cases were investigated, the first two are
kernels windowed by a Kaiser window of β = 11.0, which
ensures -112 dB level of sidelobes (this level is marked on
the diagram with a dashed line). Then, to remove the

influence of a Kaiser window sidelobes, another Kaiser
window of

-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

0 64 128 192 256 320 384 448

A
[d

B]

Fig. 6. Frequency response of non-uniformly sampled

windowed sinc() kernel (128 samples).

β=15.0, has been used (sidelobes at -143,7 dB level).
When the uniform sampling is in use, level of sampling
sidelobes can be considered independent of level of
window sidelobes, because they are separated in the
frequency domain. This is not the case for kernel sampled
non-uniformly however. The sampling sidelobes energy is
scattered over all the frequency range, so part of it adds to
window sidelobes. It is easy visible on the fig. 7, classic
sampling S/N ratio does not depend on Kaiser β parameter
(and consequently on windowing sidelobes level), while
non-uniform sampling S/N ratio is decreased by 2 dB. In
practical applications it must be compensated by choosing
window function with lower sidelobes (at a cost of
transition band width).

× – uniform sampling, ß = 11.0

 – uniform sampling, ß = 15.0
 – non-uniform sampling, ß = 11.0
 – non-uniform sampling, ß = 15.0

-140

-120

-100

-80

-60

-40

-20

0

32 64 128 256 512 1024 2048

number of samples

A
 [d

B
]

Fig. 7. Comparision of S/N ratio for uniformly and non-

uniformly sampled kernels with different number of
samples.

The gain of using the proposed algorithm instead of

uniform kernel sampling is independent of number of
samples and is equal to 18 dB. Alternatively, when S/N
ratio is specified as design parameter, the same S/N may be
achieved with number of saples reduced by a factor of 2.5.

 nπ/8

 frequency (f/fs)

frequency (f/fs)

 5. Computational costs

Althought both interpolation algorithms, the uniform
one and the proposed non-uniform one, use linear
interpolation, the later is a bit more complicated, because
of interpolator x interval is not fixed, but is a multiply of
the base grid (π/2N). It implies two tables must be used,
one containing values of kernel at sample points, and the
second one containing x coordinates of sample points.
Alternatively the second table can contain integer grid
indexes instead of floating point values of continuous x.

Another difficulty in the proposed algorithm is finding

a pair of surrounding sample points for an arbitrary x. In
the case of resampling algoritm proposed in [3], x is
increased step by step while computing a single output
sample. Then x lookup table may be searched starting from
the latest x position instead of the beginning. After the two
points surrounding current x position are found, linear
interpolation between them is performed exactly the same
way (and with the same number of operations), as with
uniform kernel sampling.

6. Design example

A real life resampler design is presented to verify the
algorithm described in the paper. The design goal for a
resampler is to be "transparent" for 16-bit linear PCM data.
To achieve this, level of distortions introduced by the
resampler must be lower than level of the quantization
noise. The latter is -97 dB for 16-bit sample resolution.
Then -100 dB S/N ratio is set as the design goal for the
resampler. Such a ratio requires (see the figure 7) 2048
uniform samples. If non-uniform sampling is used, 768
samples is enough. Number of samples can be further
decreased by increasing the Kaiser window β parameter,
but it is assumed, passband of the resampler should end at
least at 0.45 fs, so β should be keept as low as possible. For
β = 11.5 (continuous kernel sidelobes at -115 dB), and
choosing 6.45·10-5 as ε0, we get exactly 768 samples and
S/N ratio -100.08 dB. Diagrams 8. and 9. show overall

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

20

0,00 0,25 0,50 0,75 1,00 1,25 1,50 1,75

frequency (f/fs)

A
[d

B
]

Fig. 8. The passband of example resampler design.

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

20

0 64 128 192 256 320 384 448 512

frequency (f/fs)

A
 [d

B
]

Fig. 9. The whole frequency characteristic of the example

resampler design.

frequency response of the resampler and the passband in
detail.

7 Conclusion and further work

The paper describes an effective method to reduce the
size of the lookup table in an audio signal resampler based
on continuous signal reconstruction with windowed sinc()
function. The size reduction factor of 2.5 is achieved
without quality loss. As large tables are the usual
bottlenecks for algorithms executed on SIMD processors,
the algorithm described can give significant speedup of
resampling performed on SIMD unit.

The next step in the work will be implementing

described algorithm and verifying experimentally claimed
quality and properties. There is also place for further
algorithm improvement. Current algorithm version just
spreads the sidelobes energy on the whole frequency range
including the band of resampled audio signal. It may be
possible to actively shape kernel sidelobes to concentrate
their energy out of audio band, then it will be filtered out
by analog antialiasing filter placed at the output of an
audio system. If succesfull it can give additional gain on
lookup table size.

8 References

[1] Russel A. J., Beckmann P. E., Efficient arbitrary
sampling rate conversion with recursive calculation
of coefficients, IEEE Trans. on Signal Processing,
vol. 50, pp. 854-865, April 2002.

[2] Evangelista G., Design of Digital Systems for
Arbitrary Sampling Rate Conversion, EURASIP J.
Signal Processing, vol. 83, no. 2, pp. 377-387,
February 2003.

[3] Smith J. O., Gosset P., Digital Audio Resampling
Home Page, http://www.ccrma-stanford.edu/~jos/

2,00

 resample, 2004.
[4] Soras de L., The Quest For the Perfect Resampler,

http://ldesoras.free.fr/doc/articles/resampler.pdf,
2003.

[5] Lynch P., The Dolph-Chebyshev Window: A Simple
Optimal Filter, Monthly Weather Review vol. 125,
1997.

[6] Meijering E., A Chronology of Interpolation: From
Ancient Astronomy to Modern Signal and Image
Processing, Proceedings of the IEEE, Vol.90,
3.March 2002.

[7] –––, MPC7450 RISC Microprocessor Family
Reference Manual, Freescale Semiconductor Inc.,
2005.

[8] Niemitalo O., Polynomial Interpolators for High-
Quality Resampling of Oversampled Audio, 2001.

[9] Talla D., John L. K., Burger D., Bottlenecks in
Multimedia Processing with SIMD style Extensions
and Architectural Enhancements, IEEE Transactions
on Computers, vol. 52, no. 8, pp. 1015-1031, August
2003.

[10] Diefendorff K., Dubey P. K., Hochsprung R., Scales
H., AltiVec Extension to PowerPC Accelerates Media
Processing, IEEE MICRO, Mar-Apr 2000, pp. 85-
95.

