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Abstract: Classic interpolators (resamplers) of band-

limited signals are based on windowed sinc() function 
kernels. To speed computations up, kernel is not calculated 
in realtime, but sampled and stored in a table. Linear 
interpolation between kernel samples is used to lower 
noise caused by discretization of the continuous kernel 
function. In spite of this, the table is lenghty for high 
quality interpolators. This paper describes how the table 
size can be significantly lowered at a cost of slightly 
increased computation complexity and without quality loss. 
The algorithm described is specifically designed for SIMD 
processors, which high computational power is limited by 
memory bandwidth.  

1 Introduction 

Resampling of a bandlimited signal is a common task 
in signal processing, especially in audio signals processing. 
The general discussion of resampling systems is given in 
[1] and [2]. The input to a resampler is a discrete signal 
x[n], obtained by sampling original continuous x(t) with 
period Tin. The first step of resampling is reconstruction of 
original x(t). Then, if sampling rate is to be decreased, an 
antialiasing lowpass filter must be applied, so recon-
structed signal bandwidth is limited to fout/2, where fout is 
the output sampling frequency. The last stage of 
resampling is to sample reconstructed and if neccesary 
filtered x(t) at the new sampling rate. There are different 
approaches to x(t) reconstruction problem. The most 
straighforward approach is given in [3], where input signal 
is convolved with continuous sinc() kernel. While 
theoretically ideal, it is impossible to implement, because 
of infinite sinc() function support and computation cost of 
sinc(). The first problem may be solved by windowing the 
kernel, usually with Kaiser [3], or Chebyshev-Dolph [4], 
[5] window. The second is solved by sampling windowed 
kernel and store it in a look-up table. In fact this solution is 
a particular case of GASRC [2], where upsampling rate is 
equal to kernel oversampling (usually power of two [3], 
[4]), digital interpolator filter is approximated brickwall 
one (hence windowed sinc() impulse response), analog 
interpolator is sample and hold or linear one. 

 
It has been shown in [6], that windowed sinc() 

interpolator cannot be considered optimal for every 
application, as it can't for example resample constant 
signal precisely (which may be critical in image 
processing). It is not a problem in audio processing 

however as passband starts from 20 Hz here. Windowed 
sinc() interpolator has also an advantage of easy control of 
distortions in the frequency domain, as three sources of 
distortions: kernel windowing, kernel interpolation and 
aliasing may be controlled  independently [4]. Another 
advantage of the solution is the possibility to change 
resampling ratio in real time and wide range (for example 
multioctave pitch sliding effects), which is not possible in 
the algorithm proposed in [1]. Windowed sinc() 
resampling is also easy to paralellize for execution on 
SIMD processors. It has a drawback however, which is 
usage of large lookup table containing oversampled kernel. 
A computing power of current SIMD processors can be 
limited by memory bandwidth, so large lookup tables 
should be avoided. For example PowerPC G4 AltiVec unit 
clocked at 1.0 GHz, is able to perform up to 109 MAC 
(multiply and accumulate) instructions per second taking 8 
floating point arguments each [7]. It gives an 32 GB/s 
stream of data, which is beyond capabilities of memory 
systems in consumer electronics/PC-s. Lowering the size 
of lookup tables even at a cost of increased number of 
calculations, yields increased performance of an algorithm 
executed by SIMD processor [9].  

2 Kernel sampling 

The most precise way to obtain a value of a continuous 
reconstruction kernel at any point x is to calculate it in-
place. It involves one division and calculation of sin(x) 
function, which is usually based on Taylor series. 
Distortions caused by kernel sampling are eliminated this 
way, but calculations take time. Things get worse if the 
sinc() function is windowed. The Kaiser window requires 
calculation of the modified Bessel function, which is again 
developed in power series. The Chebyshev-Dolph window 
is given in the frequency domain and usually transformed 
with DFT, so no continuous time domain representation 
exists even. 

 
The first approach to kernel interpolation was nearest-

neighbour interpolation between the look-up table entries. 
Some results are cited in [1] and given in [4]. To suppress 
sidelobes level below -80 dB, the kernel must be 
oversampled 4096 times, so depending on requirements on 
filter transition band it may result in  32 768 [4] – 140 000 
[1] samples. Linear interpolation between samples is an 
obvious step forward, it improves distortions level by 
factor of 2 (in dB scale) [4], so oversampling by 128 is 



enough to achieve -100 dB attenuation of distortions. 
Higher level interpolation is investigated in [8] with the 
difference that not filter kernel is interpolated, but 
oversampled input sequence. The goal of presented 
algorithm is to increase interpolation precision while 
staying on linear (1-st order) interpolation level. It can be 
done with non-uniform kernel sampling. Looking at 
sampled windowed sinc() (abbreviated later in this paper 
as wsinc()) kernel it is intuitive that sample points should 
be placed more dense in some areas, while in other places 
the kernel may be approximated by linear function in wider 
range. Let's constrain samples x position to be aligned to 
π/2N grid, N = 10 on the following diagrams. Sample 
positioning starts from 0, of course wsinc(0) = 1.0. Then x 
is increased in π/2N steps while following inequality is 
true: 
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where g(i,k,n) is a linear interpolator between grid point of 
index k (the last placed point) and current grid point of 
index n, given by a formula: 
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The interpolation and formulas (1.1) and (1.2) are 

illustrated graphically on fig. 1. 
 

 
 
Fig. 1. Interpolation and interpolation error of the kernel. 

 
The formula (1.1) is just the sum of lengths of dotted 

vertical lines on the figure 1, representing errors of linear 
interpolation of wsinc() kernel at grid points. It can be 
interpreted as a rough approximation of interpolation error 
integral: 
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where g(x,k,n) is a continuous version of linear 

interpolator between two kernel samples. 
 
The end point of current interpolation interval is moved 

right (n is increased by one) until ε exceeds ε0. This way 
the sum of interpolation errors made between two 
consecutive kernel samples is limited to ε0. Two diagrams 
below (fig. 2 and 3) shows the same windowed sinc() 
kernel of <0, 16π> range windowed by the Kaiser window 
(β = 11.0, which gives windowing sidelobes at -112 dB 
level). Threshold ε0 value has been choosen as 0.0159, to 
get exactly 128 samples, the same number as in regulary, 8 
times oversampled kernel. 
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Fig.2. The kernel sampled regularly with oversampling 

rate of 8 (128 samples). 
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Fig. 3 The kernel sampled irregularly on π/1024 grid, (128 
samples). 

 
The figure 4 compares interpolation errors of both 

interpolators. The interpolation error of the regularly 
sampled kernel is shown in gray, its maximum value is 
6.4156·10-3. The interpolation error of the irregularly 
sampled  kernel is shown in black, its maximum value is 
6.3445·10-4, so it is about 10 times lower. The most 
important thing for audio processing however, is how it 
influences the kernel frequency response.  
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Fig.4. Comparision of interpolation errors of uniformly 

and non-uniformly sampled kernel (128 samples). 

4 Frequency properties 

Interpolation of regularly sampled kernel produces a 
pair of sidelobes located around the doubled oversampling 
frequency [4] (16 fs in the example case), see the figure 5. 
These sidelobes are mirrored and repeated in both 
directions around every multiply of the oversampling 
freqency, so one of them is always reproduced in the 
baseband, creating aliasing distortions. The level of 
sidelobes expressed in the logarithmic scale depends 
linearly on the exponent N defining oversampling rate. 
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Fig. 5. Frequency response of uniformly sampled 

windowed sinc() kernel (128 samples). 
 

If the kernel is sampled non-uniformly with the 
proposed algorithm, energy of sidelobes is spreaded on the 
whole frequency range between 0 and 2N-1 fs. Of course 
part of it still creates aliasing distortions in the passband, 
but most of the energy will be filtered out. In the presented 
example aliasing distortions caused by reconstruction 
kernel sampling are reduced by 18 dB (figure 6). 

 
The more general comparision between uniform 

sampling and the proposed algorithm is shown on the 
figure 7. Four cases were investigated, the first two are 
kernels windowed by a Kaiser window of β = 11.0, which 
ensures -112 dB level of sidelobes (this level is marked on 
the  diagram with a dashed line). Then, to remove the 

influence of a Kaiser window sidelobes, another Kaiser 
window of  

-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

0 64 128 192 256 320 384 448

A 
[d

B]

 
Fig. 6. Frequency response of non-uniformly sampled 

windowed sinc() kernel (128 samples). 
 
β=15.0, has been used (sidelobes at -143,7 dB level). 
When the uniform sampling is in use, level of sampling 
sidelobes can be considered independent of level of 
window sidelobes, because they are separated in the 
frequency domain. This is not the case for kernel sampled 
non-uniformly however. The sampling sidelobes energy is 
scattered over all the frequency range, so part of it adds to 
window sidelobes. It is easy visible on the fig. 7, classic 
sampling S/N ratio does not depend on Kaiser β parameter 
(and consequently on windowing sidelobes level), while 
non-uniform sampling S/N ratio is decreased by 2 dB. In 
practical applications it must be compensated by choosing 
window function with lower sidelobes (at a cost of 
transition band width). 
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Fig. 7. Comparision of S/N ratio for uniformly and non-

uniformly sampled kernels with different number of 
samples. 

 
The gain of using the proposed algorithm instead of 

uniform kernel sampling is independent of number of 
samples and is equal to 18 dB. Alternatively, when S/N 
ratio is specified as design parameter, the same S/N may be 
achieved with number of saples reduced by a factor of 2.5. 

 nπ/8 

 frequency (f/fs) 
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 5. Computational costs 

Althought both interpolation algorithms, the uniform 
one and the proposed non-uniform one, use linear 
interpolation,  the later is a bit more complicated, because 
of interpolator x interval is not fixed, but is a multiply of 
the base grid (π/2N). It implies two tables must be used, 
one containing values of kernel at sample points, and the 
second one containing x coordinates of sample points. 
Alternatively the second table can contain integer grid 
indexes instead of floating point values of continuous x. 

 
Another difficulty in the proposed algorithm is finding 

a pair of surrounding sample points for an arbitrary x. In 
the case of resampling algoritm proposed in [3], x is 
increased step by step while computing a single output 
sample. Then x lookup table may be searched starting from 
the latest x position instead of the beginning. After the two 
points surrounding current x position are found, linear 
interpolation between them is performed exactly the same 
way (and with the same number of operations), as with 
uniform kernel sampling. 

6. Design example 

A real life resampler design is presented to verify the 
algorithm described in the paper. The design goal for a 
resampler is to be "transparent" for 16-bit linear PCM data. 
To achieve this, level of distortions introduced by the 
resampler must be lower than level of the quantization 
noise. The latter is -97 dB for 16-bit sample resolution. 
Then -100 dB S/N ratio is set as the design goal for the 
resampler. Such a ratio requires (see the figure 7) 2048 
uniform samples. If non-uniform sampling is used, 768 
samples is enough. Number of samples can be further 
decreased by increasing the Kaiser window β parameter, 
but it is assumed, passband of the resampler should end at 
least at 0.45 fs, so β should be keept as low as possible. For 
β = 11.5 (continuous kernel sidelobes at -115 dB), and 
choosing 6.45·10-5 as ε0, we get exactly 768 samples and 
S/N ratio -100.08 dB. Diagrams 8. and 9. show overall 
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Fig. 8. The passband of example resampler design. 
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Fig. 9. The whole frequency characteristic of the example 

resampler design. 
  

frequency response of the resampler and the passband in 
detail. 

7 Conclusion and further work 

The paper describes an effective method to reduce the 
size of the lookup table in an audio signal resampler based 
on continuous signal reconstruction with windowed sinc() 
function. The size reduction factor of 2.5 is achieved 
without quality loss. As large tables are the usual 
bottlenecks for algorithms executed on SIMD processors, 
the algorithm described can give significant speedup of 
resampling performed on SIMD unit. 

 
The next step in the work will be implementing 

described algorithm and verifying experimentally claimed 
quality and properties. There is also place for further 
algorithm improvement. Current algorithm version just 
spreads the sidelobes energy on the whole frequency range 
including the band of resampled audio signal. It may be 
possible to actively shape kernel sidelobes to concentrate 
their energy out of audio band, then it will be filtered out 
by analog antialiasing filter placed at the output of an 
audio system. If succesfull it can give additional gain on 
lookup table size. 
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