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Abstract: The paper presents paralellized structures
of 16-bit integer, one-dimensional FIR filters optimized
for  AltiVec  SIMD  processing  unit  used  in  PowerPC
processor  family.  As  FIR  filtering,  like  most  of  DSP
kernels, is memory bandwidth limited, proposed struc-
tures minimize number of memory accesses, increasing
filter  computation  speed.  Performance  of  three  alter-
native filter structures is compared and analysed.

1 Introduction

Finite  impulse response digital  filter  is  one  of  the
basic  DSP  operations,  used  not  only  standalone,  but
being a base for many other algorithms. Mathematically
the  filter  is  a  convolution  operation,  where  filter
coefficients  are  convoluted  with  the  filtered  signal,
according to the well known formula:

y [k ]=∑
n=0 

N−1 

x [k−n]⋅f [n] (1)

where x[n] is the filtered signal, and f[n] is the table of
filter  coefficients containing  N elements. For  effective
SIMD  implementation,  convolution  operation  may be
treated  as  multiplication  of  a  matrix  made  of  shifted
fragments of input vector, by vector of filter coefficients.

Most of audio applications process 16-bit signed integer
samples. That is why I've choosen a 16-bit filter. Accu-
mulators  have  to  be  longer  however, for  high quality
processing  32-bit  accumulators  are  needed  (assuming
filter coefficients are normalized:

∑
n=0 

N−1 

∣ f [n]∣ 2 16 (2)

it  is  guarranted  no  overflow will  occur  for  any input
signal).

In the practical implementation input vector is very
long, often it can be considered unlimited (for example
while processing stream of Internet radio).  Filter  table
has the known length, but I assume here it does not fit
into the SIMD register file (filters from 64 to 8192 taps
are tested). This approach differs from the one taken by
most  of researchers  [2][4][5][6],  but  matches practical
applications  better  (FIR  of  less  than  64  taps  is  not

selective enough for many applications).

A general FIR filter cannot be optimized in terms of
multiplications and additions. All optimizations of FIR
filters  are  based  either  on  specific  properties  of  filter
coefficients (table symmetry for linear phase filters [13],
table sparsity for FRM filters [14]), or specific properties
of the signal (polyphase filters for resamplers [8]). I do
not  assume  any  of  those  properties  in  the  paper,  so
number  of  arithmetic  operations  does  not  change
compared to the formula (1).

Speedup gained on using SIMD unit comes from two
sources. The first one is obviously SIMD parallelism of
computation, as single instruction processes 8 samples at
once. The second is reordering of calculations in a way
which reduces number of memory reads per one signal
sample.

Implementation  of  FIR  filters  on  different  SIMD
units were a subject of some previous papers. Unfortuna-
tely  most  of  them  investigate  only  very  short  filters
(usually below 64 taps),  and doesn't take into account
limited  memory bandwitdh.  Intel  application  note  for
MMX [9] describes 16-tap filter, application note from
Motorola [11] describes a few short filters up to 64 taps.
In [2] author does not specify tested FIR parameters, he
only mentions the dataset fits L1 cache (which is a bit
unrealistic, especially for filter input vector). In the work
[4],  a 32-tap filter is ran in a loop  over the same 256
samples of input. Similarly the paper [5] presents 35-tap
FIR running in a loop over set of 4000 samples.

FIR  filter  architectures  presented  in  the  paper  are
implemented  as  a  class  in  Reggae  [16],  an  object
oriented streaming multimedia processing framework for
MorphOS operating  system. That  is  why working  on
extremely long data streams and taking into account the
limited  memory bandwidth of  the  hardware  are  prin-
ciples of proposed designs.

2 Calculations reordering

Reordering  of  FIR  calculation  is  critical  for  the
algorithm pefrormance if memory bandwidth is limited.
It has been shown, that most of simple DSP operations,
like FIR filters are memory bound [1][2][3].  In typical
conditions  SIMD  unit  calculating  a  convolution  is  at



least a few times faster than memory bus. For Pegasos II
machine used for measurements vec_msum() instruction
performed in a tight, unrolled loop needs data at a rate of
32 GB/s, while main memory controller can deliver data
at only 225 MB/s (two-level cache helps a lot, but does
not solve the problem).

As  mentioned  earlier,  digital  convolution  may be
dentoed  as  matrix  by  vector  multiplication.  To  avoid
negative  indexes,  N-1  zeros  are  added  at  the  start  of
input data,  then filter  table is  mirrored, so both signal
and filter table indexes can be incremented in the loop.
After these simple operations, FIR filter can be denoted
as following multiplication:

Y =X⋅F=[ x [0] x [1] x [2]  x [N−1 ]
x [1] x [2] x [3]  x [N ]
x [2] x [3 ] x [4]  x [N1 ]
⋮ ⋮ ⋮ ⋱ ⋮

]⋅[ f [0 ]
f [1]
⋮

f [N−1]] (3)

where  Y is output vector,  F is a mirrored filter coeffi-
cients table and the matrix X is made of shifted copies of
input  preceeded  with  N-1  zeros.  Straightforward
implementation performs this multiplication row by row,
which  requires  2N memory  reads  for  every  output
sample.  Taking advantage of  the  large  (32 × 128  bit)
AltiVec register file, calculation can be reordered, then
many rows are  multiplied in  one pass.  It  dramatically
reduces number of memory reads. For example if 8 rows
(and 8 output samples) are calculated in one pass (it will
be  called  8-pipe  algorithm, in the  paper),  every filter
coefficient is used 8 times once loaded into a register,
the same for most of input samples. Formally for m-pipe
algorithm for filter  of  N taps we need to load  N filter
coefficients  and  N+m-1 input  samples  for  m  output
samples. Then number of memory reads per sample can
be then given as:

RPS=
2 Nm−1

m
(4)

3 Available SIMD instructions

There are different AltiVec instructions that can be
used for integer 16-bit FIR with 32-bit accumulation [12]
[10].  The  most  promising  one  is  vec_msum(),  which
performs eight 16-bit by 16-bit multiplications with 32-
bit product and 8 32-bit additions. An alternative set of
instructions would be vec_mule() and vec_mulo() accom-
panied by vec_add(). Set of these three instructions has
lower  number of  operations  per  single  processor  ins-
truction however, so  only filter  architectures based on
vec_msum() will be analysed. Because of different sizes
of arguments (16-bit) and results (32-bit) the instruction
uses a bit unusual layout of arguments (Fig. 1).

Fig. 1. Arguments layout for vec_msum() instruction.

4 Three alternative structures

Because  of  vec_msum() arguments  layout  some
permutation  operations  for  arguments  ordering  are
unavoidable. There are three variants possible:

1. Input  data  are  fetched  without permutation,  output
data  have to  be summed across register,  permuted,
then reduced to 16-bit. (architecture A).

2. Input data are permuted, so output is in-order, it has
to be reduced to 16-bit however (architecture B).

3. Some permutation is done on input, some on output,
no across register summation (architecture C).

For  all  three  architectures  most  of  matrix  X rows
must be  produced  by  data  shifting. As  every AltiVec
register contains 8 samples, only every 8-th row may be
loaded  directly,  the  rest  is  generated  with  vec_sld()
instruction,  which is  byte-precise left  shift  across  two
registers.

4.1 Architecture A

In this architecture input data are not  permuted, so
one  vec_msum() argument  consists  of  8  consecutive
input samples, the second one is made of 8 consecutive
filter  coefficients,  so  one  vec_msum() works  for  one
output sample. An output sample is accumulated across
an  AltiVec  register  in  four  32-bit  partial  results.  A
disadvantage  of  architecture  A  is  that  every  output
sample  requires  the  whole  128-bit  register.  It  limits
possible parallelizing to 16-pipe filter (I assume number
of pipes is a power of two, 16-pipe filter uses 24 AltiVec
registers out of 32 available). On the other hand using 4
partial  results  allow for  gaining  additional  2  bits  for
accumulation,  as  one  partial  result  sums  only  ¼  of
multiplications.  It  is  important  for  very  long  filters,
where  normalization  requirement  (2)  limits  dynamic
range of coefficients. If these additional 2 bits are used,
partial  results  are  shifted  2  bits  right  before  across-
register summation done with  vec_sums().  After that, 8
sums are truncated to 16 bits by discarding lower half,
permuted  into  one  register  and  stored.  The  figure  2
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shows an example of computation order for  N = 16 and
m = 8  on  the  matrix  X in  (3). One  small  rectangle
represents two elements of the matrix.

Fig. 2. Order of computations for the FIR architecture A
on matrix X with N = 16 and m = 8.

4.2 Architecture B

The  principle  of  this  design  is  to  perform  all
permutations on input data. The order of computation of
matrix  X is  shown  on  the  figure  3.  In  this  case  one
vec_msum() instruction works for 4 output samples. Note
that every input sample is repeated twice before passed
to  vec_msum().  For  example an argument  for  the first
vec_msum() must be:

[ x [0 ] x [1 ] x [1] x [2] x [2] x [3] x [3 ] x [4 ] ] (5)

It can't be done with shifting, so every time it must be
done  with  vec_perm().  Filter  coefficients  have  to  be
permuted as well, vec_split() repeats chosen two across a
register.  The  advantage  of  architecture  B  is  that  an
output register holds 4 accumulators instead of one as in
architecture A. This saves some registers and allows for
32-pipe computations. The disadvantage is a high num-
ber of permutations.

Fig. 3. Order of computations for the FIR architecture B
on matrix X with N = 16 and m = 8.

4.3 Architecture C

The third proposed architecture is some compromise
between previous two. Accumulator registers are inter-
leaved, so half of them holds only even samples of the
output,  the second half holds odd  samples (for  8-pipe
filter  one  register  holds  just  samples  0,  2,  4,  6,  the
second one holds 1, 3, 5, 7). Then input vectors passed
to vec_msum() can be produced by simple shifts as in the
architecture A, but one  vec_msum() works for 4 output
samples (and one  accumulator register  holds  4  output

samples) as in the architecture B, so 32-pipe routine can
be  used.  Interleaving  output  samples  and  discarding
lower 16 bits can be done in the same permutation. The
figure 4 shows computation order for this architecture.

Fig. 4. Order of computations for the FIR architecture C
on matrix X with N = 16 and m = 8.

5 Implementations and their performance

The three described architectures of FIR filter have
been implemented on Pegasos II machine equipped with
PowerPC 7447 (G4) processor clocked at 1.0 GHz, and
using DDR-266 memory on  133  MHz  FSB bus.  The
processor  has  32  kB  of  L1  cache  and  512  kB of  L2
cache.  Measured  main  memory  access  speed  is  225
MB/s  for  reading  and  470  MB/s  for  writing.  Filter
routines and benchmarking program have been written in
C and compiled with GCC 2.95.4 compiler. The source
code  can  be  found  in  [15].  Except  of  three  SIMD
implementations,  two  other  routines  have  been
measured, a straightforward,  "naive" implementation of
the  formula  (1),  and  memory access  optimized  scalar
(not using SIMD unit) 8-pipe routine taking advantage of
32 GPR registers in the processor.

For  the  three  AltiVec  architectures  numbers  of
executed  AltiVec  instructions  were  counted  (by
analyzing disassembled executable),  for  1024-tap  filter
(N = 1024) and 1 048 576 (220) input samples. Results
are presented in the table below.

Tab. 1. Instruction count for three FIR architectures.

Instruction Arch. A
16-pipe

Arch. B
32-pipe

Arch C.
32-pipe

Unit

vsplitb
vsplitw
vspltw
vlsdoi
vperm
lvx
stvx
vor
vaddubm
vsububm
vmsumshm
vsumsws

0
1
0

118 095 873
1 048 576

16 908 288
131 072

17 170 432
0
0

134 217 728
1 048 576

2
32 768

16 777 216
8 552 448

134 348 800
8 519 680

131 072
8 454 144

16 777 216
12 582 916

134 217 728
0

0
32 768

16 777 216
121 798 656

131 072
8 519 691

131 072
12 648 448

0
0

134 217 728
0

VPU
VPU
VPU
VPU
VPU
LSU
LSU
VIU1
VIU1
VIU1
VIU2
VIU2

As  it  can  be  seen  in  the  table,  number  of  MAC
instructions (vmsumshm) and store instructions (stvx) is
the same in all three architectures. It should be, because
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proposed three  architectures do  not change number  of
multiplications and additions, store instructions are used
only to store output samples. What is worth noting, is the
impact  of  multi-pipelining  on  load  (lvx)  instructions.
Without multi-pipelining there will be 2.147·109 16-bit
loads  (according  to  the  formula  (2)),  which  means
2.684·108 lvx loads (128-bit). When N in the formula (2)
is  large,  having  m pipelines  instead  of  one  reduces
number of memory loads m times.

Real  performance  of  described  filters  has  been
measured with a benchmark program (which source code
is available in [15]).  Benchmark measures performance
in Mtaps/s (millions filter taps per second) for different
filter lengths from 64 to 8192 taps. The benchmark uses
input signal vector of 9 000 000 samples. Performance of
filters is presented in the table below.

Tab. 2. FIR filters performance in Mtaps/s for different
filter lengths.

Architecture 64 128 256 512 1024 2048 4096 8192

scalar, 1-pipe
scalar, 8-pipe
arch. A, 16-pipe
arch. B, 32-pipe
arch. C, 32-pipe

229
361

2840
2600
2780

237
391

4210
3260
3460

242
409

5185
3625
3900

245
418

5810
3830
4120

246
424

6170
3970
4320

247
428

6400
4040
4360

247
429

6520
4085
4425

246
429

6540
4090
4440

Fig. 5. Performance comparison of different filter
architectures.

In spite of only 16 pipes, architecture A outperforms the
rest.  It  is  a  sign,  that  memory bound  task  turns  into
computationally  bound  one.  The  main  problem  of
architectures  B  and C seem to  be  overloading Vector
Permute Unit of the CPU. In the table below instruction
loads  for  VPU  (Vector  Permute  Unit),  VIU1  (Simple
Vector  Integer  Unit),  VIU2  (Complex  Vector  Integer
Unit) and LSU (Load and Store Unit) are calculated.

Tab. 3. Instruction load on execution units.

Architecture VPU VIU1 VIU2 LSU

arch. A, 16-pipe
arch. B, 32-pipe
arch. C, 32-pipe

1.19·108

1.60·108

1.39·108

0.34·108

0.38·108

0.12·108

1.34·108

1.34·108

1.34·108

0.16·108

0.08·108

0.08·108

The main difference here is  the load  of VPU unit,
which is the lowest for the architecture A.

6 Conclusion

SIMD units in spite of their almost 10-year history
and  presence  in  every  personal  computer,  are  still  a
challenge for programmers. Classic optimization techni-
ques as well as  autovectorization in compilers, concen-
trate  on  register-level  parallelization  and  reduction  of
arithmetic operations, while many DSP processing tasks
are memory bound. Careful optimization prioritized on
reducing load/store operations can give enormous speed-
up of DSP algorithms implemented on SIMD units and
remove memory throughput limits.

The best of proposed FIR routines achieves 80% of
theoretical AltiVec unit throughput (7447 unit clocked at
1.0 GHz is able to perform 8·109 16-bit MAC operations
with 32-bit accumulation, assuming ideal pipelining and
register interleaving) in spite of very limited bandwidth
of main memory controller.  Speedup over plain scalar
code  (26.5  times  faster)  is  much more  than expected
from 8-way SIMD parallelism and shows how important
is temporal data locality while designing DSP algorithms
for SIMD processing units.
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