
PERFORMANCE ANALYSIS OF ALTERNATIVE STRUCTURES
FOR 16-BIT INTEGER FIR FILTER IMPLEMENTED ON ALTIVEC

SIMD PROCESSING UNIT

Grzegorz Kraszewski

Białystok Technical University, Department of Electric Engineering
Wiejska 45D, 15-351 Białystok, Poland, e-mail: krashan@teleinfo.pb.edu.pl

Abstract: The paper presents paralellized structures
of 16-bit integer, one-dimensional FIR filters optimized
for AltiVec SIMD processing unit used in PowerPC
processor family. As FIR filtering, like most of DSP
kernels, is memory bandwidth limited, proposed struc-
tures minimize number of memory accesses, increasing
filter computation speed. Performance of three alter-
native filter structures is compared and analysed.

1 Introduction

Finite impulse response digital filter is one of the
basic DSP operations, used not only standalone, but
being a base for many other algorithms. Mathematically
the filter is a convolution operation, where filter
coefficients are convoluted with the filtered signal,
according to the well known formula:

y [k]=∑
n=0

N−1

x [k−n]⋅f [n] (1)

where x[n] is the filtered signal, and f[n] is the table of
filter coefficients containing N elements. For effective
SIMD implementation, convolution operation may be
treated as multiplication of a matrix made of shifted
fragments of input vector, by vector of filter coefficients.

Most of audio applications process 16-bit signed integer
samples. That is why I've choosen a 16-bit filter. Accu-
mulators have to be longer however, for high quality
processing 32-bit accumulators are needed (assuming
filter coefficients are normalized:

∑
n=0

N−1

∣ f [n]∣ 2 16 (2)

it is guarranted no overflow will occur for any input
signal).

In the practical implementation input vector is very
long, often it can be considered unlimited (for example
while processing stream of Internet radio). Filter table
has the known length, but I assume here it does not fit
into the SIMD register file (filters from 64 to 8192 taps
are tested). This approach differs from the one taken by
most of researchers [2][4][5][6], but matches practical
applications better (FIR of less than 64 taps is not

selective enough for many applications).

A general FIR filter cannot be optimized in terms of
multiplications and additions. All optimizations of FIR
filters are based either on specific properties of filter
coefficients (table symmetry for linear phase filters [13],
table sparsity for FRM filters [14]), or specific properties
of the signal (polyphase filters for resamplers [8]). I do
not assume any of those properties in the paper, so
number of arithmetic operations does not change
compared to the formula (1).

Speedup gained on using SIMD unit comes from two
sources. The first one is obviously SIMD parallelism of
computation, as single instruction processes 8 samples at
once. The second is reordering of calculations in a way
which reduces number of memory reads per one signal
sample.

Implementation of FIR filters on different SIMD
units were a subject of some previous papers. Unfortuna-
tely most of them investigate only very short filters
(usually below 64 taps), and doesn't take into account
limited memory bandwitdh. Intel application note for
MMX [9] describes 16-tap filter, application note from
Motorola [11] describes a few short filters up to 64 taps.
In [2] author does not specify tested FIR parameters, he
only mentions the dataset fits L1 cache (which is a bit
unrealistic, especially for filter input vector). In the work
[4], a 32-tap filter is ran in a loop over the same 256
samples of input. Similarly the paper [5] presents 35-tap
FIR running in a loop over set of 4000 samples.

FIR filter architectures presented in the paper are
implemented as a class in Reggae [16], an object
oriented streaming multimedia processing framework for
MorphOS operating system. That is why working on
extremely long data streams and taking into account the
limited memory bandwidth of the hardware are prin-
ciples of proposed designs.

2 Calculations reordering

Reordering of FIR calculation is critical for the
algorithm pefrormance if memory bandwidth is limited.
It has been shown, that most of simple DSP operations,
like FIR filters are memory bound [1][2][3]. In typical
conditions SIMD unit calculating a convolution is at

least a few times faster than memory bus. For Pegasos II
machine used for measurements vec_msum() instruction
performed in a tight, unrolled loop needs data at a rate of
32 GB/s, while main memory controller can deliver data
at only 225 MB/s (two-level cache helps a lot, but does
not solve the problem).

As mentioned earlier, digital convolution may be
dentoed as matrix by vector multiplication. To avoid
negative indexes, N-1 zeros are added at the start of
input data, then filter table is mirrored, so both signal
and filter table indexes can be incremented in the loop.
After these simple operations, FIR filter can be denoted
as following multiplication:

Y =X⋅F=[x [0] x [1] x [2]  x [N−1]
x [1] x [2] x [3]  x [N]
x [2] x [3] x [4]  x [N1]
⋮ ⋮ ⋮ ⋱ ⋮

]⋅[f [0]
f [1]
⋮

f [N−1]] (3)

where Y is output vector, F is a mirrored filter coeffi-
cients table and the matrix X is made of shifted copies of
input preceeded with N-1 zeros. Straightforward
implementation performs this multiplication row by row,
which requires 2N memory reads for every output
sample. Taking advantage of the large (32 × 128 bit)
AltiVec register file, calculation can be reordered, then
many rows are multiplied in one pass. It dramatically
reduces number of memory reads. For example if 8 rows
(and 8 output samples) are calculated in one pass (it will
be called 8-pipe algorithm, in the paper), every filter
coefficient is used 8 times once loaded into a register,
the same for most of input samples. Formally for m-pipe
algorithm for filter of N taps we need to load N filter
coefficients and N+m-1 input samples for m output
samples. Then number of memory reads per sample can
be then given as:

RPS=
2 Nm−1

m
(4)

3 Available SIMD instructions

There are different AltiVec instructions that can be
used for integer 16-bit FIR with 32-bit accumulation [12]
[10]. The most promising one is vec_msum(), which
performs eight 16-bit by 16-bit multiplications with 32-
bit product and 8 32-bit additions. An alternative set of
instructions would be vec_mule() and vec_mulo() accom-
panied by vec_add(). Set of these three instructions has
lower number of operations per single processor ins-
truction however, so only filter architectures based on
vec_msum() will be analysed. Because of different sizes
of arguments (16-bit) and results (32-bit) the instruction
uses a bit unusual layout of arguments (Fig. 1).

Fig. 1. Arguments layout for vec_msum() instruction.

4 Three alternative structures

Because of vec_msum() arguments layout some
permutation operations for arguments ordering are
unavoidable. There are three variants possible:

1. Input data are fetched without permutation, output
data have to be summed across register, permuted,
then reduced to 16-bit. (architecture A).

2. Input data are permuted, so output is in-order, it has
to be reduced to 16-bit however (architecture B).

3. Some permutation is done on input, some on output,
no across register summation (architecture C).

For all three architectures most of matrix X rows
must be produced by data shifting. As every AltiVec
register contains 8 samples, only every 8-th row may be
loaded directly, the rest is generated with vec_sld()
instruction, which is byte-precise left shift across two
registers.

4.1 Architecture A

In this architecture input data are not permuted, so
one vec_msum() argument consists of 8 consecutive
input samples, the second one is made of 8 consecutive
filter coefficients, so one vec_msum() works for one
output sample. An output sample is accumulated across
an AltiVec register in four 32-bit partial results. A
disadvantage of architecture A is that every output
sample requires the whole 128-bit register. It limits
possible parallelizing to 16-pipe filter (I assume number
of pipes is a power of two, 16-pipe filter uses 24 AltiVec
registers out of 32 available). On the other hand using 4
partial results allow for gaining additional 2 bits for
accumulation, as one partial result sums only ¼ of
multiplications. It is important for very long filters,
where normalization requirement (2) limits dynamic
range of coefficients. If these additional 2 bits are used,
partial results are shifted 2 bits right before across-
register summation done with vec_sums(). After that, 8
sums are truncated to 16 bits by discarding lower half,
permuted into one register and stored. The figure 2

×

+

××

+

××

+

××

+

×

16-bit

16-bit

32-bit

32-bit

16-bit

16-bit

shows an example of computation order for N = 16 and
m = 8 on the matrix X in (3). One small rectangle
represents two elements of the matrix.

Fig. 2. Order of computations for the FIR architecture A
on matrix X with N = 16 and m = 8.

4.2 Architecture B

The principle of this design is to perform all
permutations on input data. The order of computation of
matrix X is shown on the figure 3. In this case one
vec_msum() instruction works for 4 output samples. Note
that every input sample is repeated twice before passed
to vec_msum(). For example an argument for the first
vec_msum() must be:

[x [0] x [1] x [1] x [2] x [2] x [3] x [3] x [4]] (5)

It can't be done with shifting, so every time it must be
done with vec_perm(). Filter coefficients have to be
permuted as well, vec_split() repeats chosen two across a
register. The advantage of architecture B is that an
output register holds 4 accumulators instead of one as in
architecture A. This saves some registers and allows for
32-pipe computations. The disadvantage is a high num-
ber of permutations.

Fig. 3. Order of computations for the FIR architecture B
on matrix X with N = 16 and m = 8.

4.3 Architecture C

The third proposed architecture is some compromise
between previous two. Accumulator registers are inter-
leaved, so half of them holds only even samples of the
output, the second half holds odd samples (for 8-pipe
filter one register holds just samples 0, 2, 4, 6, the
second one holds 1, 3, 5, 7). Then input vectors passed
to vec_msum() can be produced by simple shifts as in the
architecture A, but one vec_msum() works for 4 output
samples (and one accumulator register holds 4 output

samples) as in the architecture B, so 32-pipe routine can
be used. Interleaving output samples and discarding
lower 16 bits can be done in the same permutation. The
figure 4 shows computation order for this architecture.

Fig. 4. Order of computations for the FIR architecture C
on matrix X with N = 16 and m = 8.

5 Implementations and their performance

The three described architectures of FIR filter have
been implemented on Pegasos II machine equipped with
PowerPC 7447 (G4) processor clocked at 1.0 GHz, and
using DDR-266 memory on 133 MHz FSB bus. The
processor has 32 kB of L1 cache and 512 kB of L2
cache. Measured main memory access speed is 225
MB/s for reading and 470 MB/s for writing. Filter
routines and benchmarking program have been written in
C and compiled with GCC 2.95.4 compiler. The source
code can be found in [15]. Except of three SIMD
implementations, two other routines have been
measured, a straightforward, "naive" implementation of
the formula (1), and memory access optimized scalar
(not using SIMD unit) 8-pipe routine taking advantage of
32 GPR registers in the processor.

For the three AltiVec architectures numbers of
executed AltiVec instructions were counted (by
analyzing disassembled executable), for 1024-tap filter
(N = 1024) and 1 048 576 (220) input samples. Results
are presented in the table below.

Tab. 1. Instruction count for three FIR architectures.

Instruction Arch. A
16-pipe

Arch. B
32-pipe

Arch C.
32-pipe

Unit

vsplitb
vsplitw
vspltw
vlsdoi
vperm
lvx
stvx
vor
vaddubm
vsububm
vmsumshm
vsumsws

0
1
0

118 095 873
1 048 576

16 908 288
131 072

17 170 432
0
0

134 217 728
1 048 576

2
32 768

16 777 216
8 552 448

134 348 800
8 519 680

131 072
8 454 144

16 777 216
12 582 916

134 217 728
0

0
32 768

16 777 216
121 798 656

131 072
8 519 691

131 072
12 648 448

0
0

134 217 728
0

VPU
VPU
VPU
VPU
VPU
LSU
LSU
VIU1
VIU1
VIU1
VIU2
VIU2

As it can be seen in the table, number of MAC
instructions (vmsumshm) and store instructions (stvx) is
the same in all three architectures. It should be, because

3 333

2 222

8 888

7 777
6 666

5 555

1 111

4 444

11 111111

10 101010

16 161616

15 151515
14 141414

13 131313

9 999

12 121212

3

3

3

3

2

2
2

2

8

8
8

8

7

7

7

7

6

6
6

6

5

5

5

5

1

1

1

1

4

4
4

4

11

11

11

11

10

10
10

10

16

16
16

16

15

15

15

15

14

14
14

14

13

13

13

13

9

9

9

9

12

12
12

12

3

3

3

3

2

2

2

2

8

8

8

8

7

7

7

7

6

6

6

6

5

5

5

5

1

1

1

1
4

4

4

4

11

11

11

11

10

10

10

10

16

16

16

16

15

15

15

15

14

14

14

14

13

13

13

13

9

9

9

9

12

12

12

12

proposed three architectures do not change number of
multiplications and additions, store instructions are used
only to store output samples. What is worth noting, is the
impact of multi-pipelining on load (lvx) instructions.
Without multi-pipelining there will be 2.147·109 16-bit
loads (according to the formula (2)), which means
2.684·108 lvx loads (128-bit). When N in the formula (2)
is large, having m pipelines instead of one reduces
number of memory loads m times.

Real performance of described filters has been
measured with a benchmark program (which source code
is available in [15]). Benchmark measures performance
in Mtaps/s (millions filter taps per second) for different
filter lengths from 64 to 8192 taps. The benchmark uses
input signal vector of 9 000 000 samples. Performance of
filters is presented in the table below.

Tab. 2. FIR filters performance in Mtaps/s for different
filter lengths.

Architecture 64 128 256 512 1024 2048 4096 8192

scalar, 1-pipe
scalar, 8-pipe
arch. A, 16-pipe
arch. B, 32-pipe
arch. C, 32-pipe

229
361

2840
2600
2780

237
391

4210
3260
3460

242
409

5185
3625
3900

245
418

5810
3830
4120

246
424

6170
3970
4320

247
428

6400
4040
4360

247
429

6520
4085
4425

246
429

6540
4090
4440

Fig. 5. Performance comparison of different filter
architectures.

In spite of only 16 pipes, architecture A outperforms the
rest. It is a sign, that memory bound task turns into
computationally bound one. The main problem of
architectures B and C seem to be overloading Vector
Permute Unit of the CPU. In the table below instruction
loads for VPU (Vector Permute Unit), VIU1 (Simple
Vector Integer Unit), VIU2 (Complex Vector Integer
Unit) and LSU (Load and Store Unit) are calculated.

Tab. 3. Instruction load on execution units.

Architecture VPU VIU1 VIU2 LSU

arch. A, 16-pipe
arch. B, 32-pipe
arch. C, 32-pipe

1.19·108

1.60·108

1.39·108

0.34·108

0.38·108

0.12·108

1.34·108

1.34·108

1.34·108

0.16·108

0.08·108

0.08·108

The main difference here is the load of VPU unit,
which is the lowest for the architecture A.

6 Conclusion

SIMD units in spite of their almost 10-year history
and presence in every personal computer, are still a
challenge for programmers. Classic optimization techni-
ques as well as autovectorization in compilers, concen-
trate on register-level parallelization and reduction of
arithmetic operations, while many DSP processing tasks
are memory bound. Careful optimization prioritized on
reducing load/store operations can give enormous speed-
up of DSP algorithms implemented on SIMD units and
remove memory throughput limits.

The best of proposed FIR routines achieves 80% of
theoretical AltiVec unit throughput (7447 unit clocked at
1.0 GHz is able to perform 8·109 16-bit MAC operations
with 32-bit accumulation, assuming ideal pipelining and
register interleaving) in spite of very limited bandwidth
of main memory controller. Speedup over plain scalar
code (26.5 times faster) is much more than expected
from 8-way SIMD parallelism and shows how important
is temporal data locality while designing DSP algorithms
for SIMD processing units.

References

[1] Sebot J., Drach-Temam N., Memory Bandwidth:
The True Bottleneck of SIMD Multimedia
Performance of Superscalar Processor, Lecture
Notes in Computer Science, vol. 2150/2001, 437.

[2] Sebot J., A Performance Evaluation of
Multimedia Kernels Using AltiVec Streaming
SIMD Extensions, Sixth International Symposium
on High Performance Computer Architecture,
Toulouse, 2000.

[3] Talla D., John L. K., Burger D., Bottlenecks in
Multimedia Processing with SIMD Style
Extensions And Architectural Enchancements,
IEEE Transactions on Computers, Vol. 52, Issue
8, Aug. 2003, 1015–1031.

[4] Talla D., John L. K., Lapinski V., Evans B. L.,
Evaluating Signal Processing and Multimedia
Applications on SIMD, VLIW and Superscalar
Architectures, 2000 IEEE International Conferen-
ce on Computer Design (ICCD'00), 163.

[5] Nguyen H., John L. K., Exploiting SIMD Paralle-
lism In DSP And Multimedia Algorithms Using
the AltiVec Technology, Proceedings of the 13th
International Conference on Supercomputing,
1999, 11–20.

64 128 256 512 1024 2048 4096 8192

0

1000

2000

3000

4000

5000

6000

7000

filter length

pe
rf

or
m

an
ce

 M
ta

ps
/s

arch. A, 16-pipe

arch. C, 32-pipe

arch. B, 32-pipe

scalar, 1-pipe

scalar, 8-pipe

[6] Bhargava R., John L. K., Evans B. L., Radhakrish-
nan R., Evaluating MMX Technology Using DSP
And Multimedia Applications, Proceedings of.
31st Annual ACM/IEEE International Symposium
on Microarchitecture, 1998, 37–46.

[7] Fridman J., Data Alignment for Sub-Word Paral-
lelism in DSP, 1999 IEEE Workshop on Signal
Processing Systems, 251–260.

[8] Crochiere R. E., Rabiner L. R., Multirate Digital
Signal Processing, 76–91.

[9] [—], 32-bit Floating Point Real and Complex 16-
tap FIR Filter Implemented Using Streaming
SIMD Extensions, Intel 1999.

[10] [—], MPC7450 RISC Microprocessor Family
Reference Manual, Freescale Semiconductor
2005.

[11] [—], AltiVec Real FIR [application note] ,
Motorola 1998.

[12] [—], AltiVec Technology Programming Interface
Manual, Motorola 1999.

[13] Lyons R. G., Wprowadzenie do cyfrowego przet-
warzania sygnałów [Understanding Digital Sig-
nal Processing], 1997, 398–399.

[14] Lim Y. C., Frequency-Response Masking Appro-
ach for the Synthesis of Sharp Linear Phase
Digital Filters, IEEE Transactions on Circuits and
Systems, vol. 33, 1986, 357–364.

[15] Kraszewski G., Source code for AltiVec optimized
16-bit integer FIR filter and benchmark program,
http:// teleinfo.pb.edu.pl/~krashan/altivec/fir16/.

[16] Kraszewski G., Reggae, the streaming media
library for MorphOS, http://teleinfo.pb.edu.pl/
reggae.

