
Signal Processing '2006, Poznań

Grzegorz Kraszewski
<krashan@teleinfo.pb.edu.pl>
Białystok Technical University

Department of Electric Engineering

Performance Analysis of Alternative Structures
for 16-bit Integer FIR Filter

Implemented on AltiVec SIMD Processing Unit

AltiVec

Signal Processing '2006 – Grzegorz Kraszewski - Performance Analysis of Alternative Structures for 16-bit Integer FIR Filter Implemented on AltiVec SIMD Processing Unit

1/11

AltiVec
Presentation topics

1. A few words about AltiVec.
2. FIR filtering with a SIMD unit.
3. The vec_msum(), which does all the work.
4. Minimizing the number of memory accesses.
5. The first approach – data permutation at output.
6. The second one – data permutation at input.
7. The third approach – a golden compromise?
8. Experimental verification.
9. Analysis of execution units load.
10. Conclusion.

Signal Processing '2006 – Grzegorz Kraszewski - Performance Analysis of Alternative Structures for 16-bit Integer FIR Filter Implemented on AltiVec SIMD Processing Unit

2/11

AltiVec
AltiVec processing unit

AltiVec is a name of SIMD unit implemented in microprocessors from PowerPC
family, produced by Freescale (former Motorola SPS), IBM, AMCC and PA Semi. It may
be compared to SSE on x86 architecture (in fact AltiVec has been introduced earlier).
The latest AltiVec based product is Cell by IBM, its Synergistic Processing Elements are
extension to the AltiVec design.

REGISTER FILE
32 REGISTERS
128 BITS EACH

divided to:
4 floats

4 32-bit integers
8 16-bit integers
16 8-bit integers

SIMPLE INTEGER
ARITHMETIC UNIT

PERMUTATION UNIT

LOAD/STORE UNIT

COMPLEX INTEGER
ARITHMETIC UNIT

FLOATING POINT
UNIT

 CACHES
AND

 MEMORY

INSTRUCTIONS

Signal Processing '2006 – Grzegorz Kraszewski - Performance Analysis of Alternative Structures for 16-bit Integer FIR Filter Implemented on AltiVec SIMD Processing Unit

3/11

AltiVec
FIR filter and AltiVec

Assumptions: The filter is long (N > 100), input vector is very long (n > 106, possibly
unlimited), these are typical assumptions for audio processing.

Starting from a basic formula

we can apply vectorization by simply multiplying and accumulating eight signal
samples with eight filter coefficients in one vec_msum() instruction. On 1.0 GHz
machine the theroetical computation speed limit is 8.0 Gtaps/s. Coming from theory
into the practice we get only 0.9 Gtaps/s (Pegasos II machine, PowerPC G4 7447).

The main problem is FIR filtering is memory bound task. The CPU will need 32 GB of
data per second, main memory read speed (on test hardware) is only 225 MB/s. CPU
caches improve the performance but not enough. Another problem is not-straight
operand layout for vec_msum() instruction, which requires additional data
permutation.

y [k]=∑
n=0

N −1

x [k−n]⋅f [n]

Signal Processing '2006 – Grzegorz Kraszewski - Performance Analysis of Alternative Structures for 16-bit Integer FIR Filter Implemented on AltiVec SIMD Processing Unit

4/11

AltiVec
The vec_msum() instruction

×

+

××

+

××

+

××

+

×

16-bit

16-bit

32-bit

32-bit

16-bit

16-bit
The instruction is designed to multiply
and accumulate 16-bit operands with
32-bit accumulator. For FIR filter
either input or filter vector (or both)
are not in the straight order. This
unusual layout is caused by different
sizes of operands and the result.

Because of operation linearity, data
permutation can be performed on
input, on output or can be partitioned
between input and output.

Signal Processing '2006 – Grzegorz Kraszewski - Performance Analysis of Alternative Structures for 16-bit Integer FIR Filter Implemented on AltiVec SIMD Processing Unit

5/11

AltiVec
Minimizing memory accesses

x
0

x
11

x
10

x
9

x
8

x
7

x
6

x
5

x
4

x
3

x
2

x
1

f
0

f
7

f
6

f
5

f
4

f
3

f
2

f
1

f
0

f
7

f
6

f
5

f
4

f
3

f
2

f
1

f
0

f
7

f
6

f
5

f
4

f
3

f
2

f
1

f
0

f
7

f
6

f
5

f
4

f
3

f
2

f
1

Σ

Σ

Σ

Σ

× ×××××××

FIR filter calculation is no
more than dot product of
filter vector and shifted
fragments of input
vector. Doing it one by
one output sample
requires 2N memory
reads (in terms of
samples). The key to
minimize memory
accesses is to calculate
many output samples at
once ().

Calculating many output samples at once reduces memory reads by increasing data locality
(every loaded number is reused as many times as possible). The upper limit for this
parallelization is the number of available AltiVec registers. Let N be a number of filter taps,
m be a number of output samples calculated in one go. Then one output sample requires
number of memory reads given by:

RPS=
2Nm−1

m

Signal Processing '2006 – Grzegorz Kraszewski - Performance Analysis of Alternative Structures for 16-bit Integer FIR Filter Implemented on AltiVec SIMD Processing Unit

6/11

AltiVec
Data reordering at output

INPUT VECTOR

16 output
samples

(16 registers)

In this implementation 8 consecutive input samples are multiplied with 8 consecutive filter
coefficients. Every 8 filter coefficients are reused 16 times. At the start of the loop 24
samples are loaded, then shifted 8 times, after every 8 shifts the next 8 input samples are
loaded. At the end of 16-sample horizontal pass every output sample is contained in one
AltiVec register as 4 partial 32-bit sums. They have to be summed across the register, then
rounded to 16-bit. Partial sums add 2 bits to the dynamic range of filter coefficients.

Order of computations from red to green.

Signal Processing '2006 – Grzegorz Kraszewski - Performance Analysis of Alternative Structures for 16-bit Integer FIR Filter Implemented on AltiVec SIMD Processing Unit

7/11

AltiVec
Data reordering at input

INPUT VECTOR

Order of computations from red to green.

3
2
 o

u
tp

u
t

sa
m

p
le

s
in

 8
 r

eg
is

te
rs

Order of computations from red to green.

In this structure all permutations are done
on input data. The disadvantage is data
have to be duplicated in registers (for
example the first data vector has to be
[x

0
 x

1
 x1 x2 x2 x3 x3 x4], which imply more

permutations per output sample. On the
other hand there is no across-register
summation of output, 4 outputs fit in one
AltiVec register, which allows for 32-pipe
processing.

Signal Processing '2006 – Grzegorz Kraszewski - Performance Analysis of Alternative Structures for 16-bit Integer FIR Filter Implemented on AltiVec SIMD Processing Unit

8/11

AltiVec
The compromise

INPUT VECTOR

Order of computations from red to green.

3
2
 o

u
tp

u
t

sa
m

p
le

s
in

te
rl

ea
ve

d
 i
n
 8

 r
eg

is
te

rs

Order of computations from red to green.

This is a modification of the previous
algorithm, even and odd samples of
output are interleaved, so no input
samples duplication is needed, at a cost of
additional de-interleaving of output. De-
interleaving may be performed in one
operation with rounding output to 16 bits.
This architecture preserves 32-pipe
parallelism, so may be considered as the
most promising in terms of performance.

Signal Processing '2006 – Grzegorz Kraszewski - Performance Analysis of Alternative Structures for 16-bit Integer FIR Filter Implemented on AltiVec SIMD Processing Unit

9/11

AltiVec
Results of experiments

64 128 256 512 1024 2048 4096 8192
0

1000

2000

3000

4000

5000

6000

7000

filter lenght

p
er

fo
rm

a
n
ce

 M
ta

p
s/

s

AltiVec A, 16-pipe, permutation on output.

AltiVec C, 32-pipe, permutation on both
input and output.

AltiVec B, 32-pipe, permutation on input.

Scalar 8-pipe.

Scalar naive 1-pipe.

source code available at
http://teleinfo.pb.edu.pl/~krashan/altivec/fir16
results for Pegasos II, PowerPC G4/7447 1.0 GHz.

The best filter performed at 6.54 Gtaps/s, which is 80% of theoretic throughput. It is
unexpected that filter A, calculating only 16 samples per pass is the fastest. The explanation
is optimization turned the task from memory bound into computation bound one.

Signal Processing '2006 – Grzegorz Kraszewski - Performance Analysis of Alternative Structures for 16-bit Integer FIR Filter Implemented on AltiVec SIMD Processing Unit

10/11

AltiVec
AltiVec units load analysis

1.6

1.4
1.2

1.0

0.8

0.6

0.4

0.2

0.0
VPU

permutation
unit

VIU1
simple

arithmetic
unit

VIU2
complex

arithmetic
unit

LSU
load/store

unit

·108 instructions

Number of instructions performed by AltiVec execution
units while calculating 1024-tap filter on 1 048 576
(220) samples.

AltiVec A, 16-pipe, permutation
on output.

AltiVec C, 32-pipe, permutation
on both input and output.

AltiVec B, 32-pipe, permutation
on input.

The load on permutation unit is
what determines the performan-
ce of the three filter structures.
While the structure "A" has only
16 pipes (so two times more
memory loads, see the dia-
gram), it puts less load on VPU.
It is clear that now FIR filtering
is a computationally bound task.

Signal Processing '2006 – Grzegorz Kraszewski - Performance Analysis of Alternative Structures for 16-bit Integer FIR Filter Implemented on AltiVec SIMD Processing Unit

12/12

AltiVec
Conclusion

● Personal computers designs have a wide gap between CPU speed
(especially its SIMD unit) and memory throughput.

● Classic approach to algorithms optimization (both hand-made and
automatic by a compiler) does not take memory accesses into
account.

● Increasing temporal data locality allows for significant algorithm
speed-up without changing number of arithmetic operations.
Exchanging some memory accesses for additional arithmetic can give
even some more acceleration.

● Memory optimized algorithm for FIR filtering achieves 80% of
theoretical CPU computing speed, which is not bad considering
pipeline flushes at loops turns and the fact that data shifts
(permutations) are not taken into account.

