
Grzegorz KRASZEWSKI
<krashan@teleinfo.pb.edu.pl>
Białystok Technical University
Department of Electrical Engineering
Wiejska 45D, 15-351 Białystok

FAST FIR FILTERS FOR SIMD PROCESSORS
WITH LIMITED MEMORY BANDWIDTH

FIR filtering is one of the most populars DSP algorithms. Finite impulse response filters are easy
to design, unconditionally stable, phase linearity is easily obtained. Also noise and rounding error
analysis are easy. On the other hand FIR filters require high filter order when compared to IIR ones. It
means increased number of multiplicatons and additions, and – what is also important – number of
memory reads. Current processors and especially their SIMD units like AltiVec or SSE can perform
FIR calculation much faster than memory controller can supply the data. Then reordering of
calculations without changing the amount of them, gives significant algorithm speedup. In the paper
the idea of FIR reordering is presented, followed by experimental results obtained on PowerPC G4
processor with AltiVec SIMD unit.

1. FIR FILTERS ON SIMD PROCESSORS

FIR filtering, or digital convolution is a common operation in DSP area. Because
of its simplicity it can be easily implemented on SIMD type of processors.
Parallelization itself, while it is easily applied to FIR filters, is not enough to squeeze
the maximum performance from a processor. The classic definition of computation
complexity takes into account only number of arithmetic operations, usually in terms
of additions and multiplication. What it doesnt't take is an effort needed to fetch data
from memory. Current general purpose processors can crunch numbers much faster
than fetch them from memory. This reduces the algorithm performance, especially
when number of computations per kB of processed data is relatively low (which is the
case for FIR filters) [1].

Key words:
Digital Signal Processing, FIR filters,

 SIMD processors, AltiVec.

I assume in the paper, a FIR filter is long (has about 50 taps at least) and operates
on a long data stream with unknown length. It is the case when processing audio
streams for example. The filter is implemented with a well known formula of digital
convolution:

y [k]=∑
n=0

N−1

x [k−n]⋅ f [n] (1)

where x[n] is the input signal and f[n] is the table of filter coefficients. N is the
filter order or number of taps. The general filter form cannot be optimized in terms of
number of additions and multiplications. There are many optimizations based either
on assumptions on input signal (for example polyphase filters [6]), or assumptions on
filter coefficients (for example linear phase filters have symmetrical table, which
allows for saving of N/2 multiplications [11]. Frequency response masking filters
have many zero coefficients [12]). The general filter form will be assumed later in the
paper.

An N-order FIR filter requires N multiplications and N additions for every output
signal sample. It also reqires 2N memory read operations, N of them is for input
signal, the rest for them is for filter coefficients. As nowadays SIMD processors are
very fast, memory reading becomes the bottleneck of the algorithm [1]. For example
the machine used for experiments is Pegasos II with PowerPC 7447 processor
clocked at 1.0 GHz. Theoretical maximum memory bandwidth required for
vec_fmadd() operator used in FIR implementation is 12 GB/s (assuming no pipeline
flushes), while maximum theoretical bandwidth of DDR-266 memory used in the
hardware is 2.1 GB/s. Of course two levels of cache memory help much, but load
instruction always adds latency, even if data are fetched from L1 cache [8].

Vectorization of FIR filters was the subject of some previous publications. There
are application notes by Intel for MMX [7] and by Motorola for AltiVec [9] with
accelerated FIR filter code discussions. Only very short filters are discussed however,
where the whole filter table fits easily into SIMD register file. In [5] there is a short
35-taps filter investigated with short signals of 4000 samples. Publication [2]
mentions some FIR filter being tested, but without specifying any of its parameters. In
the paper [4] there is 32-tap filter investigated working repeatedly on the same 256
samples (which fits the whole "data stream" into L1 cache). In my work I've assumed
unlimited stream of input signal (I've benchmarked my filters with uncompressed
music fragments of 10 to 25 millions of samples). I've also assumed long filters
(lenghts from 64 to 8192 taps were tested). My benchmarks have been ran in a real
environment of working operating system, which has significant impact on cache
availability.

2. REORDERING OF COMPUTATIONS

While one output sample of FIR filter requires 2N memory reads, it should be
noted, that most of them are loading the same values (signal samples and filter
coefficents) as used for the previous output sample (only one sample of input signal is
new). It is obvious looking at hardware implementations, where input samples move
along a shift register.

Convolution operation may be expressed in terms of vectors and matrices. Then to
obtain K samples of output signal, a K×N matrix composed of shifted copies of input
signal is multiplied by a vector containing filter coefficents:

Y=[
y0

y1

y2

...
yK−1

]=[
x0 x−1 x−2  x−N1

x1 x0 x−1  x−N2

x2 x1 x0  x−N3

⋮ ⋮ ⋮ ⋱ ⋮
xK−1 xK−2 x K−3  xK−N

]⋅[
f 0

f 1

f 2

⋮
f N−1

] (2)

To simplify an implementation vector X' is created from input vector X by adding
N-1 zero samples in front of X. Another implementational trick is to flip the filter
vector F, so indexes in both input vector and filter vector are going upward. After
applying both the changes, equation (2) takes following form:

Y=[
y0

y1

y2

...
yK−1

]=[x0
' x1

' x2
'  x N−1

'

x1
' x2

' x 3
'  x N

'

x2
' x 3

' x 4
'  x N1

'

⋮ ⋮ ⋮ ⋱ ⋮
x K−1
' xK

' xK1
'  x KN−2

'
]⋅[f 0

'

f 1
'

f 2
'

⋮
f N−1
'

] (3)

which can be directly implemented with following C code:

void fir(float *X, float *F, float *Y, int K, int N)
{
 int k, n;
 for (k = 0; k < K; k++)
 {

 float s = 0.0;
 for (n = 0; n < N; n++) s += F[n] * X[k + n];
 Y[k] = s;
 }

}

The preformance of this code will be used as reference level for comparision with
AltiVec optimized versions. Optimization gain comes from two sources: the first is
four-way parallelism of AltiVec floating point operations, we may expect the code to
be four times faster. The second, less obvious source of speedup is increasing data
locality by operation reordering. Reference code traverses the matrix X horizontally,
row by row. This requires 2N reads from memory (be it L1 cache, L2 cache or main
memory). Data locality may be increased significantly by dividing the X matrix into
rectangular blocks and splitting F and Y vectors accordingly.

The block size will be a multiply of 4, as one AltiVec register can hold 4 floating
point numbers. Hence the minimal block is 4 × 4. Of course we can (and should) use
bigger blocks, under the condition, that data needed to compute through a single block
have to fit into AltiVec register file (128 numbers). For p×q block we need p/4
registers for filter coefficent, q/4 registers for output and p/4 + q/4 registers for
(shifted) input, the sum is (p+q)/2 (4). At the same time number of memory reads (in
32-bit words) per one output sample can be calculated as (2N + q)/p (5).

Fig. 1. Order of MAC-s (multiply and accumulate) for 16 output samples and 16-tap filter: reference
code (left) and AltiVec code with 8×8 blocks (right).

The figure above shows the order of computations for plain reference C code and
for AltiVec version using 8×8 blocks. Note that inside a block computation order is
transposed – columns are calculated instead of rows. Then a single 4-element MAC
operation uses one filter coefficent for all 4 signal samples (and it is reused then for
the whole column). It requires additional vec_splat_u32() operation, but has the
advantage over row calculation, that accumulation register holds ready output
samples, when horizontal scan across the matrix is finished. There is no need for
across-register summation, which requires additional output sample gathering before
storing in memory.

3. OPTIMAL BLOCK SIZE

We have two constraints for the block size. The first one is number of available
AltiVec registers and formula (4). The second one is number of memory reads per
output sample (5). To lower this value we should increase q (the number of output
samples calculated simultaneously) and decrease p. For minimum p = 4, I've measured
performance for different q from 4 to 56. Results are shown in the table below:

q registers used memory reads per output sample performance in Ms/s for N=1024

4
8
12
16
24
32
40
44
48
52
56

6
9

11
13
17
21
25
27
29
31
all

513.0
257.0
171.7
129.0
86.3
65.0
52.2
47.5
43.7
40.4
37.6

0.95
1.56
1.93
2.11
2.30
2.27
2.35
2.57
2.37
2.60
0.45

The number of used registers have been found by analysing executable code and
checking a number of "1"-s OR-ed into VRSAVE special register used in multitasking
environment for task switching. For q = 56 there is not enough AltiVec registers. The
GCC 2.95.4 compiler used just emulates missing registers in memory, and as it can be
seen in the disassembled code, generates a lot of load-store instructions, which of
course degrades performance. Experiment results confirm expectations, the best
results are achieved when number of simultaneously calculated output samples is as
big as possible using all available SIMD registers, and for AltiVec architecture
optimal block size is 4×52. The following graph compares performance of reference
code, optimized scalar code (using available 32 FPU registers and 1×8 blocks) and
optimized AltiVec code using 4×52 blocks. The source code for benchmark program
is available in [13].

4. CONCLUSION

SIMD units are very common in nowadays personal computers, as almost every
produced CPU has one built-in. Their computing power however is not often put to a
good use. The main reason for this is that classic methods of optimization don't take
memory bandwidth limits into account in spite it is a well known bottleneck for
current CPUs and their SIMD units particularly. In this paper I've shown, that proper
calculation reordering, which increases data locality, can speed even very simple
"clasically-unoptimizable" algorithm (like convolution is) up, even if number of
additions and multiplications is not changed. Optimized AltiVec FIR code is 8 to 14
times faster than scalar reference code, in spite of only 4-way AltiVec parallelism. As
many DSP techniques are based on digital convolution, these can be accelerated as
well.

REFERENCES

[1] SEBOT J., DRACH-TEMAM N., Memory Bandwidth: The True Bottleneck of SIMD Multimedia
Performance of Superscalar Processor, Lecture Notes in Computer Science, vol. 2150/2001, 437.

[2] SEBOT J., A Performance Evaluation of Multimedia Kernels Using AltiVec Streaming SIMD
Extensions, Sixth International Symposium on High Performance Computer Architecture, Toulouse,
2000.

[3] TALLA D., JOHN L. K., BURGER D., Bottlenecks in Multimedia Processing with SIMD Style
Extensions And Architectural Enchancements, IEEE Transactions on Computers, Vol. 52, Issue 8,
Aug. 2003, 1015–1031.

[4] TALLA D., JOHN L. K., LAPINSKI V., EVANS B. L., Evaluating Signal Processing and Multi-
media Applications on SIMD, VLIW and Superscalar Architectures, 2000 IEEE International
Conference on Computer Design (ICCD'00), 163.

[5] NGUYEN H., JOHN L. K., Exploiting SIMD Parallelism In DSP And Multimedia Algorithms
Using the AltiVec Technology, Proceedings of the 13th International Conference on Supercompu-
ting, 1999, 11–20.

[6] CROCHIERE R. E., RABINER L. R., Multirate Digital Signal Processing, 76–91.
[7] [—], 32-bit Floating Point Real and Complex 16-tap FIR Filter Implemented Using Streaming

SIMD Extensions, Intel 1999.
[8] [—], MPC7450 RISC Microprocessor Family Reference Manual, Freescale Semiconductor 2005.
[9] [—], AltiVec Real FIR [application note], Motorola 1998.
[10] [—], AltiVec Technology Programming Interface Manual, Motorola 1999.
[11] LYONS R. G., Wprowadzenie do cyfrowego przetwarzania sygnałów [Understanding Digital

Signal Processing], 1997, 398–399.
[12] LIM Y. C., Frequency-Response Masking Approach for the Synthesis of Sharp Linear Phase

Digital Filters, IEEE Transactions on Circuits and Systems, vol. 33, 1986, 357–364.
[13] KRASZEWSKI G., Source code for AltiVec optimized FIR filter and benchmark program, http://

teleinfo.pb.edu.pl/~krashan/altivec/fir/.

