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FAST FIR FILTERS FOR SIMD PROCESSORS
WITH LIMITED MEMORY BANDWIDTH

FIR filtering is one of the most populars DSP algorithms. Finite impulse response filters are easy
to design, unconditionally stable, phase linearity is easily obtained. Also noise and rounding error
analysis are easy. On the other hand FIR filters require high filter order when compared to IIR ones. It
means increased number of multiplicatons and additions, and – what is also important – number of
memory reads. Current processors and especially their SIMD units like AltiVec or  SSE can perform
FIR  calculation  much  faster  than  memory  controller  can  supply  the  data.  Then  reordering  of
calculations without changing the amount of them, gives significant algorithm speedup. In the paper
the idea of FIR reordering is presented, followed by experimental results obtained on PowerPC G4
processor with AltiVec SIMD unit.

1. FIR FILTERS ON SIMD PROCESSORS

FIR filtering, or digital convolution is a common operation in DSP area. Because
of  its  simplicity  it  can  be  easily  implemented  on  SIMD  type  of  processors.
Parallelization itself, while it is easily applied to FIR filters, is not enough to squeeze
the maximum performance from a processor. The classic definition of computation
complexity takes into account only number of arithmetic operations, usually in terms
of additions and multiplication. What it doesnt't take is an effort needed to fetch data
from memory. Current general purpose processors can crunch numbers much faster
than fetch them from memory. This reduces the algorithm performance,  especially
when number of computations per kB of processed data is relatively low (which is the
case for FIR filters) [1].
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I assume in the paper, a FIR filter is long (has about 50 taps at least) and operates
on a long data  stream with unknown length.  It is  the case when processing audio
streams for example. The filter is implemented with a well known formula of digital
convolution:

y [k ]=∑
n=0 

N−1 

x [k−n ]⋅ f [n]           (1)

where  x[n] is the input signal and  f[n] is the table of filter coefficients.  N is the
filter order or number of taps. The general filter form cannot be optimized in terms of
number of additions and multiplications. There are many optimizations based either
on assumptions on input signal (for example polyphase filters [6]), or assumptions on
filter  coefficients  (for  example  linear  phase  filters  have  symmetrical  table,  which
allows  for  saving  of  N/2  multiplications  [11].  Frequency response  masking filters
have many zero coefficients [12]). The general filter form will be assumed later in the
paper.

An N-order FIR filter requires N multiplications and N additions for every output
signal  sample.  It  also  reqires  2N memory read  operations,  N of  them is  for  input
signal, the rest for them is for filter coefficients. As nowadays SIMD processors are
very fast, memory reading becomes the bottleneck of the algorithm [1]. For example
the  machine  used  for  experiments  is  Pegasos  II with  PowerPC 7447  processor
clocked  at  1.0  GHz.  Theoretical  maximum  memory  bandwidth  required  for
vec_fmadd() operator used in FIR implementation is 12 GB/s (assuming no pipeline
flushes),  while  maximum theoretical  bandwidth  of  DDR-266 memory used  in  the
hardware is 2.1 GB/s. Of course two levels of cache memory help much, but load
instruction always adds latency, even if data are fetched from L1 cache [8].

Vectorization of FIR filters was the subject of some previous publications. There
are application notes by Intel for MMX [7] and by Motorola for  AltiVec [9]  with
accelerated FIR filter code discussions. Only very short filters are discussed however,
where the whole filter table fits easily into SIMD register file. In [5] there is a short
35-taps  filter  investigated  with  short  signals  of  4000  samples.  Publication  [2]
mentions some FIR filter being tested, but without specifying any of its parameters. In
the paper [4] there is 32-tap filter investigated working repeatedly on the same 256
samples (which fits the whole "data stream" into L1 cache). In my work I've assumed
unlimited  stream of  input  signal  (I've benchmarked my filters  with  uncompressed
music  fragments  of  10  to  25  millions  of  samples).  I've  also  assumed long  filters
(lenghts from 64 to 8192 taps were tested). My benchmarks have been ran in a real
environment  of  working operating  system,  which  has  significant  impact  on  cache
availability.



2. REORDERING OF COMPUTATIONS

While  one output  sample of  FIR filter  requires  2N memory reads,  it  should be
noted,  that  most  of  them are  loading  the  same  values  (signal  samples  and  filter
coefficents) as used for the previous output sample (only one sample of input signal is
new). It is obvious looking at hardware implementations, where input samples move
along a shift register.

Convolution operation may be expressed in terms of vectors and matrices. Then to
obtain K samples of output signal, a K×N matrix composed of shifted copies of input
signal is multiplied by a vector containing filter coefficents:

Y=[
y0 

y1 

y2 

...
yK−1

]=[
x0 x−1 x−2  x−N1

x1 x0 x−1  x−N2

x2 x1 x0  x−N3

⋮ ⋮ ⋮ ⋱ ⋮
xK−1 xK−2 x K−3  xK−N

]⋅[
f 0 

f 1 

f 2 

⋮
f N−1

]           (2)

To simplify an implementation vector X' is created from input vector X by adding
N-1 zero samples in front of  X.  Another implementational trick is to flip the filter
vector  F, so indexes in both input vector and filter vector are going upward. After
applying both the changes, equation (2) takes following form:

Y=[
y0 

y1 

y2 

...
yK−1

]=[ x0 
' x1 

' x2 
'  x N−1

'

x1 
' x2 

' x 3 
'  x N

'

x2 
' x 3 

' x 4 
'  x N1

'

⋮ ⋮ ⋮ ⋱ ⋮
x K−1
' xK

' xK1
'  x KN−2

'
]⋅[ f 0 

'

f 1 
'

f 2 
'

⋮
f N−1
'

]           (3)

which can be directly implemented with following C code:

void fir(float *X, float *F, float *Y, int K, int N)
{
  int k, n;
  for (k = 0; k < K; k++)
  {

       float s = 0.0;
       for (n = 0; n < N; n++) s += F[n] * X[k + n];
       Y[k] = s;
     } 

}



The preformance of this code will be used as reference level for comparision with
AltiVec optimized versions. Optimization gain comes from two sources: the first is
four-way parallelism of AltiVec floating point operations, we may expect the code to
be four times faster. The second, less obvious source of speedup is increasing data
locality by operation reordering. Reference code traverses the matrix  X horizontally,
row by row. This requires 2N reads from memory (be it L1 cache,  L2 cache or main
memory). Data locality may be increased significantly by dividing the  X matrix into
rectangular blocks and splitting F and Y vectors accordingly.

The block size will be a multiply of 4, as one AltiVec register can hold 4 floating
point numbers. Hence the minimal block is 4 × 4. Of course we can (and should) use
bigger blocks, under the condition, that data needed to compute through a single block
have  to  fit  into  AltiVec  register  file  (128  numbers).  For  p×q block  we  need  p/4
registers  for  filter  coefficent,  q/4  registers  for  output  and  p/4  +  q/4  registers  for
(shifted) input, the sum is (p+q)/2 (4). At the same time number of memory reads (in
32-bit words) per one output sample can be calculated as (2N + q)/p (5).

          

Fig. 1. Order of MAC-s (multiply and accumulate) for 16 output samples and 16-tap filter: reference
code (left) and AltiVec code with 8×8 blocks (right).

The figure above shows the order of computations for plain reference C code and
for AltiVec version using 8×8 blocks. Note that inside a block computation order is
transposed – columns are calculated instead of rows. Then a single 4-element MAC
operation uses one filter coefficent for all 4 signal samples (and it is reused then for
the  whole  column).  It  requires  additional  vec_splat_u32()  operation,  but  has  the
advantage  over  row  calculation,  that  accumulation  register  holds  ready  output
samples,  when horizontal  scan across  the matrix  is  finished.  There  is  no need for
across-register summation, which requires additional output sample gathering before
storing in memory.



3. OPTIMAL BLOCK SIZE

We have two constraints for the block size. The first one is number of available
AltiVec registers and formula (4). The second one is number of memory reads per
output sample (5). To lower this value we should increase  q (the number of output
samples calculated simultaneously) and decrease p. For minimum p = 4, I've measured
performance for different q from 4 to 56. Results are shown in the table below:

q registers used memory reads per output sample performance in Ms/s for N=1024

4
8
12
16
24
32
40
44
48
52
56

6
9

11
13
17
21
25
27
29
31
all

513.0
257.0
171.7
129.0
86.3
65.0
52.2
47.5
43.7
40.4
37.6

0.95
1.56
1.93
2.11
2.30
2.27
2.35
2.57
2.37
2.60
0.45

The number of used registers have been found by analysing executable code and
checking a number of "1"-s OR-ed into VRSAVE special register used in multitasking
environment for task switching. For q = 56 there is not enough AltiVec registers. The
GCC 2.95.4 compiler used just emulates missing registers in memory, and as it can be
seen in the disassembled code, generates  a lot  of load-store  instructions,  which of
course  degrades  performance.  Experiment  results  confirm  expectations,  the  best
results are achieved when number of simultaneously calculated output samples is as
big  as  possible  using  all  available  SIMD  registers,  and  for  AltiVec  architecture
optimal block size is 4×52. The following graph compares performance of reference
code, optimized scalar code (using available 32 FPU registers and 1×8 blocks) and
optimized AltiVec code using 4×52 blocks. The source code for benchmark program
is available in [13].



4. CONCLUSION

SIMD units are very common in nowadays personal computers,  as almost every
produced CPU has one built-in. Their computing power however is not often put to a
good use. The main reason for this is that classic methods of optimization don't take
memory bandwidth  limits  into  account  in  spite  it  is  a  well  known bottleneck  for
current CPUs and their SIMD units particularly. In this paper I've shown, that proper
calculation  reordering,  which  increases  data  locality,  can  speed  even  very  simple
"clasically-unoptimizable"  algorithm  (like  convolution  is)  up,  even  if  number  of
additions and multiplications is not changed. Optimized AltiVec FIR code is 8 to 14
times faster than scalar reference code, in spite of only 4-way AltiVec parallelism.  As
many DSP techniques are based on digital convolution, these can be accelerated as
well. 
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